4495 lines
163 KiB
C
4495 lines
163 KiB
C
/*------------------------------------------------------------------------------
|
||
* rtkcmn.c : rtklib common functions
|
||
*
|
||
* Copyright (C) 2007-2020 by T.TAKASU, All rights reserved.
|
||
*
|
||
* options : -DLAPACK use LAPACK/BLAS
|
||
* -DMKL use Intel MKL
|
||
* -DTRACE enable debug trace
|
||
* -DWIN32 use WIN32 API
|
||
* -DNOCALLOC no use calloc for zero matrix
|
||
* -DIERS_MODEL use GMF instead of NMF
|
||
* -DDLL built for shared library
|
||
* -DCPUTIME_IN_GPST cputime operated in gpst
|
||
*
|
||
* references :
|
||
* [1] IS-GPS-200D, Navstar GPS Space Segment/Navigation User Interfaces,
|
||
* 7 March, 2006
|
||
* [2] RTCA/DO-229C, Minimum operational performance standards for global
|
||
* positioning system/wide area augmentation system airborne equipment,
|
||
* November 28, 2001
|
||
* [3] M.Rothacher, R.Schmid, ANTEX: The Antenna Exchange Format Version 1.4,
|
||
* 15 September, 2010
|
||
* [4] A.Gelb ed., Applied Optimal Estimation, The M.I.T Press, 1974
|
||
* [5] A.E.Niell, Global mapping functions for the atmosphere delay at radio
|
||
* wavelengths, Jounal of geophysical research, 1996
|
||
* [6] W.Gurtner and L.Estey, RINEX The Receiver Independent Exchange Format
|
||
* Version 3.00, November 28, 2007
|
||
* [7] J.Kouba, A Guide to using International GNSS Service (IGS) products,
|
||
* May 2009
|
||
* [8] China Satellite Navigation Office, BeiDou navigation satellite system
|
||
* signal in space interface control document, open service signal B1I
|
||
* (version 1.0), Dec 2012
|
||
* [9] J.Boehm, A.Niell, P.Tregoning and H.Shuh, Global Mapping Function
|
||
* (GMF): A new empirical mapping function base on numerical weather
|
||
* model data, Geophysical Research Letters, 33, L07304, 2006
|
||
* [10] GLONASS/GPS/Galileo/Compass/SBAS NV08C receiver series BINR interface
|
||
* protocol specification ver.1.3, August, 2012
|
||
*
|
||
* version : $Revision: 1.1 $ $Date: 2008/07/17 21:48:06 $
|
||
* history : 2007/01/12 1.0 new
|
||
* 2007/03/06 1.1 input initial rover pos of pntpos()
|
||
* update only effective states of filter()
|
||
* fix bug of atan2() domain error
|
||
* 2007/04/11 1.2 add function antmodel()
|
||
* add gdop mask for pntpos()
|
||
* change constant MAXDTOE value
|
||
* 2007/05/25 1.3 add function execcmd(),expandpath()
|
||
* 2008/06/21 1.4 add funciton sortobs(),uniqeph(),screent()
|
||
* replace geodist() by sagnac correction way
|
||
* 2008/10/29 1.5 fix bug of ionosphereic mapping function
|
||
* fix bug of seasonal variation term of tropmapf
|
||
* 2008/12/27 1.6 add function tickget(), sleepms(), tracenav(),
|
||
* xyz2enu(), satposv(), pntvel(), covecef()
|
||
* 2009/03/12 1.7 fix bug on error-stop when localtime() returns NULL
|
||
* 2009/03/13 1.8 fix bug on time adjustment for summer time
|
||
* 2009/04/10 1.9 add function adjgpsweek(),getbits(),getbitu()
|
||
* add function geph2pos()
|
||
* 2009/06/08 1.10 add function seph2pos()
|
||
* 2009/11/28 1.11 change function pntpos()
|
||
* add function tracegnav(),tracepeph()
|
||
* 2009/12/22 1.12 change default parameter of ionos std
|
||
* valid under second for timeget()
|
||
* 2010/07/28 1.13 fix bug in tropmapf()
|
||
* added api:
|
||
* obs2code(),code2obs(),cross3(),normv3(),
|
||
* gst2time(),time2gst(),time_str(),timeset(),
|
||
* deg2dms(),dms2deg(),searchpcv(),antmodel_s(),
|
||
* tracehnav(),tracepclk(),reppath(),reppaths(),
|
||
* createdir()
|
||
* changed api:
|
||
* readpcv(),
|
||
* deleted api:
|
||
* uniqeph()
|
||
* 2010/08/20 1.14 omit to include mkl header files
|
||
* fix bug on chi-sqr(n) table
|
||
* 2010/12/11 1.15 added api:
|
||
* freeobs(),freenav(),ionppp()
|
||
* 2011/05/28 1.16 fix bug on half-hour offset by time2epoch()
|
||
* added api:
|
||
* uniqnav()
|
||
* 2012/06/09 1.17 add a leap second after 2012-6-30
|
||
* 2012/07/15 1.18 add api setbits(),setbitu(),utc2gmst()
|
||
* fix bug on interpolation of antenna pcv
|
||
* fix bug on str2num() for string with over 256 char
|
||
* add api readblq(),satexclude(),setcodepri(),
|
||
* getcodepri()
|
||
* change api obs2code(),code2obs(),antmodel()
|
||
* 2012/12/25 1.19 fix bug on satwavelen(),code2obs(),obs2code()
|
||
* add api testsnr()
|
||
* 2013/01/04 1.20 add api gpst2bdt(),bdt2gpst(),bdt2time(),time2bdt()
|
||
* readblq(),readerp(),geterp(),crc16()
|
||
* change api eci2ecef(),sunmoonpos()
|
||
* 2013/03/26 1.21 tickget() uses clock_gettime() for linux
|
||
* 2013/05/08 1.22 fix bug on nutation coefficients for ast_args()
|
||
* 2013/06/02 1.23 add #ifdef for undefined CLOCK_MONOTONIC_RAW
|
||
* 2013/09/01 1.24 fix bug on interpolation of satellite antenna pcv
|
||
* 2013/09/06 1.25 fix bug on extrapolation of erp
|
||
* 2014/04/27 1.26 add SYS_LEO for satellite system
|
||
* add BDS L1 code for RINEX 3.02 and RTCM 3.2
|
||
* support BDS L1 in satwavelen()
|
||
* 2014/05/29 1.27 fix bug on obs2code() to search obs code table
|
||
* 2014/08/26 1.28 fix problem on output of uncompress() for tar file
|
||
* add function to swap trace file with keywords
|
||
* 2014/10/21 1.29 strtok() -> strtok_r() in expath() for thread-safe
|
||
* add bdsmodear in procopt_default
|
||
* 2015/03/19 1.30 fix bug on interpolation of erp values in geterp()
|
||
* add leap second insertion before 2015/07/01 00:00
|
||
* add api read_leaps()
|
||
* 2015/05/31 1.31 delte api windupcorr()
|
||
* 2015/08/08 1.32 add compile option CPUTIME_IN_GPST
|
||
* add api add_fatal()
|
||
* support usno leapsec.dat for api read_leaps()
|
||
* 2016/01/23 1.33 enable septentrio
|
||
* 2016/02/05 1.34 support GLONASS for savenav(), loadnav()
|
||
* 2016/06/11 1.35 delete trace() in reppath() to avoid deadlock
|
||
* 2016/07/01 1.36 support IRNSS
|
||
* add leap second before 2017/1/1 00:00:00
|
||
* 2016/07/29 1.37 rename api compress() -> rtk_uncompress()
|
||
* rename api crc16() -> rtk_crc16()
|
||
* rename api crc24q() -> rtk_crc24q()
|
||
* rename api crc32() -> rtk_crc32()
|
||
* 2016/08/20 1.38 fix type incompatibility in win64 environment
|
||
* change constant _POSIX_C_SOURCE 199309 -> 199506
|
||
* 2016/08/21 1.39 fix bug on week overflow in time2gpst()/gpst2time()
|
||
* 2016/09/05 1.40 fix bug on invalid nav data read in readnav()
|
||
* 2016/09/17 1.41 suppress warnings
|
||
* 2016/09/19 1.42 modify api deg2dms() to consider numerical error
|
||
* 2017/04/11 1.43 delete EXPORT for global variables
|
||
* 2018/10/10 1.44 modify api satexclude()
|
||
* 2020/11/30 1.45 add API code2idx() to get freq-index
|
||
* add API code2freq() to get carrier frequency
|
||
* add API timereset() to reset current time
|
||
* modify API obs2code(), code2obs() and setcodepri()
|
||
* delete API satwavelen()
|
||
* delete API csmooth()
|
||
* delete global variable lam_carr[]
|
||
* compensate L3,L4,... PCVs by L2 PCV if no PCV data
|
||
* in input file by API readpcv()
|
||
* add support hatanaka-compressed RINEX files with
|
||
* extension ".crx" or ".CRX"
|
||
* update stream format strings table
|
||
* update obs code strings and priority table
|
||
* use integer types in stdint.h
|
||
* surppress warnings
|
||
*-----------------------------------------------------------------------------*/
|
||
#define _POSIX_C_SOURCE 199506
|
||
#include "rtklib.h"
|
||
|
||
#include <stdarg.h>
|
||
#include <ctype.h>
|
||
#include <errno.h>
|
||
|
||
|
||
/* constants -----------------------------------------------------------------*/
|
||
|
||
#define POLYCRC32 0xEDB88320u /* CRC32 polynomial */
|
||
#define POLYCRC24Q 0x1864CFBu /* CRC24Q polynomial */
|
||
|
||
#define SQR(x) ((x) * (x))
|
||
#define MAX_VAR_EPH SQR(300.0) /* max variance eph to reject satellite (m^2) */
|
||
|
||
static const double gpst0[] = {1980, 1, 6, 0, 0, 0}; /* gps time reference */
|
||
static const double gst0[] = {1999, 8, 22, 0, 0, 0}; /* galileo system time reference */
|
||
static const double bdt0[] = {2006, 1, 1, 0, 0, 0}; /* beidou time reference */
|
||
|
||
static double leaps[MAXLEAPS + 1][7] = {/* leap seconds (y,m,d,h,m,s,utc-gpst) */
|
||
{2017, 1, 1, 0, 0, 0, -18},
|
||
{2015, 7, 1, 0, 0, 0, -17},
|
||
{2012, 7, 1, 0, 0, 0, -16},
|
||
{2009, 1, 1, 0, 0, 0, -15},
|
||
{2006, 1, 1, 0, 0, 0, -14},
|
||
{1999, 1, 1, 0, 0, 0, -13},
|
||
{1997, 7, 1, 0, 0, 0, -12},
|
||
{1996, 1, 1, 0, 0, 0, -11},
|
||
{1994, 7, 1, 0, 0, 0, -10},
|
||
{1993, 7, 1, 0, 0, 0, -9},
|
||
{1992, 7, 1, 0, 0, 0, -8},
|
||
{1991, 1, 1, 0, 0, 0, -7},
|
||
{1990, 1, 1, 0, 0, 0, -6},
|
||
{1988, 1, 1, 0, 0, 0, -5},
|
||
{1985, 7, 1, 0, 0, 0, -4},
|
||
{1983, 7, 1, 0, 0, 0, -3},
|
||
{1982, 7, 1, 0, 0, 0, -2},
|
||
{1981, 7, 1, 0, 0, 0, -1},
|
||
{0}};
|
||
const double chisqr[100] = {/* chi-sqr(n) (alpha=0.001) */
|
||
10.8, 13.8, 16.3, 18.5, 20.5, 22.5, 24.3, 26.1, 27.9, 29.6,
|
||
31.3, 32.9, 34.5, 36.1, 37.7, 39.3, 40.8, 42.3, 43.8, 45.3,
|
||
46.8, 48.3, 49.7, 51.2, 52.6, 54.1, 55.5, 56.9, 58.3, 59.7,
|
||
61.1, 62.5, 63.9, 65.2, 66.6, 68.0, 69.3, 70.7, 72.1, 73.4,
|
||
74.7, 76.0, 77.3, 78.6, 80.0, 81.3, 82.6, 84.0, 85.4, 86.7,
|
||
88.0, 89.3, 90.6, 91.9, 93.3, 94.7, 96.0, 97.4, 98.7, 100,
|
||
101, 102, 103, 104, 105, 107, 108, 109, 110, 112,
|
||
113, 114, 115, 116, 118, 119, 120, 122, 123, 125,
|
||
126, 127, 128, 129, 131, 132, 133, 134, 135, 137,
|
||
138, 139, 140, 142, 143, 144, 145, 147, 148, 149};
|
||
const char *formatstrs[32] = { /* stream format strings */
|
||
"RTCM 2", /* 0 */
|
||
"RTCM 3", /* 1 */
|
||
"NovAtel OEM7", /* 2 */
|
||
"ComNav", /* 3 */
|
||
"u-blox UBX", /* 4 */
|
||
"Swift Navigation SBP", /* 5 */
|
||
"Hemisphere", /* 6 */
|
||
"SkyTraq", /* 7 */
|
||
"Javad GREIS", /* 8 */
|
||
"NVS BINR", /* 9 */
|
||
"BINEX", /* 10 */
|
||
"Trimble RT17", /* 11 */
|
||
"Septentrio SBF", /* 12 */
|
||
"Tersus", /* 13 */
|
||
"RINEX", /* 14 */
|
||
"SP3", /* 15 */
|
||
"RINEX CLK", /* 16 */
|
||
"SBAS", /* 17 */
|
||
"NMEA 0183", /* 18 */
|
||
"TERSUS", /* 19 */
|
||
NULL};
|
||
|
||
static char *obscodes[] = {
|
||
/* observation code strings */
|
||
|
||
"", "1C", "1P", "1W", "1Y", "1M", "1N", "1S", "1L", "1E", /* 0- 9 */
|
||
"1A", "1B", "1X", "1Z", "2C", "2D", "2S", "2L", "2X", "2P", /* 10-19 */
|
||
"2W", "2Y", "2M", "2N", "5I", "5Q", "5X", "7I", "7Q", "7X", /* 20-29 */
|
||
"6A", "6B", "6C", "6X", "6Z", "6S", "6L", "8L", "8Q", "8X", /* 30-39 */
|
||
"2I", "2Q", "6I", "6Q", "3I", "3Q", "3X", "1I", "1Q", "5A", /* 40-49 */
|
||
"5B", "5C", "9A", "9B", "9C", "9X", "1D", "5D", "5P", "5Z", /* 50-59 */
|
||
"6E", "7D", "7P", "7Z", "8D", "8P", "4A", "4B", "4X", "" /* 60-69 */
|
||
};
|
||
#ifdef L5_TO_L2
|
||
/*L1 + L5˫Ƶ<CBAB><C6B5><EFBFBD>ջ<EFBFBD> <20><><EFBFBD><EFBFBD>L5<4C><35><EFBFBD>ȼ<EFBFBD><C8BC><EFBFBD>L2ǰ<32><C7B0>*/
|
||
static char codepris[7][MAXFREQ][16] = {
|
||
/* code priority for each freq-index */
|
||
/* L1/E1/B1 L2/E5b/B2b L5/E5a/B2a E6/LEX/B3 E5(a+b) */
|
||
{"CPYWMNSL", "IQX", "CPYWMNDLSX", "", "", ""}, /* GPS */
|
||
{"CPABX", "IQX", "CPABX", "", "", ""}, /* GLO */
|
||
{"CABXZ", "XIQ", "XIQ", "ABCXZ", "IQX", ""}, /* GAL */
|
||
{"CLSXZ", "IQXDPZ", "LSX", "LSXEZ", "", ""}, /* QZS */
|
||
{"C", "IQX", "", "", "", ""}, /* SBS */
|
||
{"IQXDPAN", "DPX", "IQXDPZ", "IQXA", "DPX", ""}, /* BDS */
|
||
{"ABCX", "ABCX", "", "", "", ""} /* IRN */
|
||
};
|
||
#else
|
||
//ԭ<><D4AD><EFBFBD>ȼ<EFBFBD>
|
||
static char codepris[7][MAXFREQ][16] = {
|
||
/* code priority for each freq-index */
|
||
/* L1/E1/B1 L2/E5b/B2b L5/E5a/B2a E6/LEX/B3 E5(a+b) */
|
||
{"CPYWMNSL", "CPYWMNDLSX", "IQX", "", "", ""}, /* GPS */
|
||
{"CPABX", "CPABX", "IQX", "", "", ""}, /* GLO */
|
||
{"CABXZ", "XIQ", "XIQ", "ABCXZ", "IQX", ""}, /* GAL */
|
||
{"CLSXZ", "LSX", "IQXDPZ", "LSXEZ", "", ""}, /* QZS */
|
||
{"C", "IQX", "", "", "", ""}, /* SBS */
|
||
{"IQXDPAN", "IQXDPZ", "DPX", "IQXA", "DPX", ""}, /* BDS */
|
||
{"ABCX", "ABCX", "", "", "", ""} /* IRN */
|
||
};
|
||
#endif
|
||
|
||
static fatalfunc_t *fatalfunc = NULL; /* fatal callback function */
|
||
|
||
/* crc tables generated by util/gencrc ---------------------------------------*/
|
||
static const uint16_t tbl_CRC16[] = {
|
||
0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50A5, 0x60C6, 0x70E7,
|
||
0x8108, 0x9129, 0xA14A, 0xB16B, 0xC18C, 0xD1AD, 0xE1CE, 0xF1EF,
|
||
0x1231, 0x0210, 0x3273, 0x2252, 0x52B5, 0x4294, 0x72F7, 0x62D6,
|
||
0x9339, 0x8318, 0xB37B, 0xA35A, 0xD3BD, 0xC39C, 0xF3FF, 0xE3DE,
|
||
0x2462, 0x3443, 0x0420, 0x1401, 0x64E6, 0x74C7, 0x44A4, 0x5485,
|
||
0xA56A, 0xB54B, 0x8528, 0x9509, 0xE5EE, 0xF5CF, 0xC5AC, 0xD58D,
|
||
0x3653, 0x2672, 0x1611, 0x0630, 0x76D7, 0x66F6, 0x5695, 0x46B4,
|
||
0xB75B, 0xA77A, 0x9719, 0x8738, 0xF7DF, 0xE7FE, 0xD79D, 0xC7BC,
|
||
0x48C4, 0x58E5, 0x6886, 0x78A7, 0x0840, 0x1861, 0x2802, 0x3823,
|
||
0xC9CC, 0xD9ED, 0xE98E, 0xF9AF, 0x8948, 0x9969, 0xA90A, 0xB92B,
|
||
0x5AF5, 0x4AD4, 0x7AB7, 0x6A96, 0x1A71, 0x0A50, 0x3A33, 0x2A12,
|
||
0xDBFD, 0xCBDC, 0xFBBF, 0xEB9E, 0x9B79, 0x8B58, 0xBB3B, 0xAB1A,
|
||
0x6CA6, 0x7C87, 0x4CE4, 0x5CC5, 0x2C22, 0x3C03, 0x0C60, 0x1C41,
|
||
0xEDAE, 0xFD8F, 0xCDEC, 0xDDCD, 0xAD2A, 0xBD0B, 0x8D68, 0x9D49,
|
||
0x7E97, 0x6EB6, 0x5ED5, 0x4EF4, 0x3E13, 0x2E32, 0x1E51, 0x0E70,
|
||
0xFF9F, 0xEFBE, 0xDFDD, 0xCFFC, 0xBF1B, 0xAF3A, 0x9F59, 0x8F78,
|
||
0x9188, 0x81A9, 0xB1CA, 0xA1EB, 0xD10C, 0xC12D, 0xF14E, 0xE16F,
|
||
0x1080, 0x00A1, 0x30C2, 0x20E3, 0x5004, 0x4025, 0x7046, 0x6067,
|
||
0x83B9, 0x9398, 0xA3FB, 0xB3DA, 0xC33D, 0xD31C, 0xE37F, 0xF35E,
|
||
0x02B1, 0x1290, 0x22F3, 0x32D2, 0x4235, 0x5214, 0x6277, 0x7256,
|
||
0xB5EA, 0xA5CB, 0x95A8, 0x8589, 0xF56E, 0xE54F, 0xD52C, 0xC50D,
|
||
0x34E2, 0x24C3, 0x14A0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,
|
||
0xA7DB, 0xB7FA, 0x8799, 0x97B8, 0xE75F, 0xF77E, 0xC71D, 0xD73C,
|
||
0x26D3, 0x36F2, 0x0691, 0x16B0, 0x6657, 0x7676, 0x4615, 0x5634,
|
||
0xD94C, 0xC96D, 0xF90E, 0xE92F, 0x99C8, 0x89E9, 0xB98A, 0xA9AB,
|
||
0x5844, 0x4865, 0x7806, 0x6827, 0x18C0, 0x08E1, 0x3882, 0x28A3,
|
||
0xCB7D, 0xDB5C, 0xEB3F, 0xFB1E, 0x8BF9, 0x9BD8, 0xABBB, 0xBB9A,
|
||
0x4A75, 0x5A54, 0x6A37, 0x7A16, 0x0AF1, 0x1AD0, 0x2AB3, 0x3A92,
|
||
0xFD2E, 0xED0F, 0xDD6C, 0xCD4D, 0xBDAA, 0xAD8B, 0x9DE8, 0x8DC9,
|
||
0x7C26, 0x6C07, 0x5C64, 0x4C45, 0x3CA2, 0x2C83, 0x1CE0, 0x0CC1,
|
||
0xEF1F, 0xFF3E, 0xCF5D, 0xDF7C, 0xAF9B, 0xBFBA, 0x8FD9, 0x9FF8,
|
||
0x6E17, 0x7E36, 0x4E55, 0x5E74, 0x2E93, 0x3EB2, 0x0ED1, 0x1EF0};
|
||
static const uint32_t tbl_CRC24Q[] = {
|
||
0x000000, 0x864CFB, 0x8AD50D, 0x0C99F6, 0x93E6E1, 0x15AA1A, 0x1933EC, 0x9F7F17,
|
||
0xA18139, 0x27CDC2, 0x2B5434, 0xAD18CF, 0x3267D8, 0xB42B23, 0xB8B2D5, 0x3EFE2E,
|
||
0xC54E89, 0x430272, 0x4F9B84, 0xC9D77F, 0x56A868, 0xD0E493, 0xDC7D65, 0x5A319E,
|
||
0x64CFB0, 0xE2834B, 0xEE1ABD, 0x685646, 0xF72951, 0x7165AA, 0x7DFC5C, 0xFBB0A7,
|
||
0x0CD1E9, 0x8A9D12, 0x8604E4, 0x00481F, 0x9F3708, 0x197BF3, 0x15E205, 0x93AEFE,
|
||
0xAD50D0, 0x2B1C2B, 0x2785DD, 0xA1C926, 0x3EB631, 0xB8FACA, 0xB4633C, 0x322FC7,
|
||
0xC99F60, 0x4FD39B, 0x434A6D, 0xC50696, 0x5A7981, 0xDC357A, 0xD0AC8C, 0x56E077,
|
||
0x681E59, 0xEE52A2, 0xE2CB54, 0x6487AF, 0xFBF8B8, 0x7DB443, 0x712DB5, 0xF7614E,
|
||
0x19A3D2, 0x9FEF29, 0x9376DF, 0x153A24, 0x8A4533, 0x0C09C8, 0x00903E, 0x86DCC5,
|
||
0xB822EB, 0x3E6E10, 0x32F7E6, 0xB4BB1D, 0x2BC40A, 0xAD88F1, 0xA11107, 0x275DFC,
|
||
0xDCED5B, 0x5AA1A0, 0x563856, 0xD074AD, 0x4F0BBA, 0xC94741, 0xC5DEB7, 0x43924C,
|
||
0x7D6C62, 0xFB2099, 0xF7B96F, 0x71F594, 0xEE8A83, 0x68C678, 0x645F8E, 0xE21375,
|
||
0x15723B, 0x933EC0, 0x9FA736, 0x19EBCD, 0x8694DA, 0x00D821, 0x0C41D7, 0x8A0D2C,
|
||
0xB4F302, 0x32BFF9, 0x3E260F, 0xB86AF4, 0x2715E3, 0xA15918, 0xADC0EE, 0x2B8C15,
|
||
0xD03CB2, 0x567049, 0x5AE9BF, 0xDCA544, 0x43DA53, 0xC596A8, 0xC90F5E, 0x4F43A5,
|
||
0x71BD8B, 0xF7F170, 0xFB6886, 0x7D247D, 0xE25B6A, 0x641791, 0x688E67, 0xEEC29C,
|
||
0x3347A4, 0xB50B5F, 0xB992A9, 0x3FDE52, 0xA0A145, 0x26EDBE, 0x2A7448, 0xAC38B3,
|
||
0x92C69D, 0x148A66, 0x181390, 0x9E5F6B, 0x01207C, 0x876C87, 0x8BF571, 0x0DB98A,
|
||
0xF6092D, 0x7045D6, 0x7CDC20, 0xFA90DB, 0x65EFCC, 0xE3A337, 0xEF3AC1, 0x69763A,
|
||
0x578814, 0xD1C4EF, 0xDD5D19, 0x5B11E2, 0xC46EF5, 0x42220E, 0x4EBBF8, 0xC8F703,
|
||
0x3F964D, 0xB9DAB6, 0xB54340, 0x330FBB, 0xAC70AC, 0x2A3C57, 0x26A5A1, 0xA0E95A,
|
||
0x9E1774, 0x185B8F, 0x14C279, 0x928E82, 0x0DF195, 0x8BBD6E, 0x872498, 0x016863,
|
||
0xFAD8C4, 0x7C943F, 0x700DC9, 0xF64132, 0x693E25, 0xEF72DE, 0xE3EB28, 0x65A7D3,
|
||
0x5B59FD, 0xDD1506, 0xD18CF0, 0x57C00B, 0xC8BF1C, 0x4EF3E7, 0x426A11, 0xC426EA,
|
||
0x2AE476, 0xACA88D, 0xA0317B, 0x267D80, 0xB90297, 0x3F4E6C, 0x33D79A, 0xB59B61,
|
||
0x8B654F, 0x0D29B4, 0x01B042, 0x87FCB9, 0x1883AE, 0x9ECF55, 0x9256A3, 0x141A58,
|
||
0xEFAAFF, 0x69E604, 0x657FF2, 0xE33309, 0x7C4C1E, 0xFA00E5, 0xF69913, 0x70D5E8,
|
||
0x4E2BC6, 0xC8673D, 0xC4FECB, 0x42B230, 0xDDCD27, 0x5B81DC, 0x57182A, 0xD154D1,
|
||
0x26359F, 0xA07964, 0xACE092, 0x2AAC69, 0xB5D37E, 0x339F85, 0x3F0673, 0xB94A88,
|
||
0x87B4A6, 0x01F85D, 0x0D61AB, 0x8B2D50, 0x145247, 0x921EBC, 0x9E874A, 0x18CBB1,
|
||
0xE37B16, 0x6537ED, 0x69AE1B, 0xEFE2E0, 0x709DF7, 0xF6D10C, 0xFA48FA, 0x7C0401,
|
||
0x42FA2F, 0xC4B6D4, 0xC82F22, 0x4E63D9, 0xD11CCE, 0x575035, 0x5BC9C3, 0xDD8538};
|
||
/* function prototypes -------------------------------------------------------*/
|
||
#ifdef MKL
|
||
#define LAPACK
|
||
#define dgemm_ dgemm
|
||
#define dgetrf_ dgetrf
|
||
#define dgetri_ dgetri
|
||
#define dgetrs_ dgetrs
|
||
#endif
|
||
#ifdef LAPACK
|
||
extern void dgemm_(char *, char *, int *, int *, int *, double *, double *,
|
||
int *, double *, int *, double *, double *, int *);
|
||
extern void dgetrf_(int *, int *, double *, int *, int *, int *);
|
||
extern void dgetri_(int *, double *, int *, int *, double *, int *, int *);
|
||
extern void dgetrs_(char *, int *, int *, double *, int *, int *, double *,
|
||
int *, int *);
|
||
#endif
|
||
|
||
#ifdef IERS_MODEL
|
||
extern int gmf_(double *mjd, double *lat, double *lon, double *hgt, double *zd,
|
||
double *gmfh, double *gmfw);
|
||
#endif
|
||
|
||
/* fatal error ---------------------------------------------------------------*/
|
||
static void fatalerr(const char *format, ...)
|
||
{
|
||
char msg[1024];
|
||
va_list ap;
|
||
va_start(ap, format);
|
||
vsprintf(msg, format, ap);
|
||
va_end(ap);
|
||
if (fatalfunc)
|
||
fatalfunc(msg);
|
||
else
|
||
fprintf(stderr, "%s", msg);
|
||
exit(-9);
|
||
}
|
||
/* add fatal callback function -------------------------------------------------
|
||
* add fatal callback function for mat(),zeros(),imat()
|
||
* args : fatalfunc_t *func I callback function
|
||
* return : none
|
||
* notes : if malloc() failed in return : none
|
||
*-----------------------------------------------------------------------------*/
|
||
extern void add_fatal(fatalfunc_t *func)
|
||
{
|
||
fatalfunc = func;
|
||
}
|
||
/* satellite system+prn/slot number to satellite number ------------------------
|
||
* convert satellite system+prn/slot number to satellite number
|
||
* args : int sys I satellite system (SYS_GPS,SYS_GLO,...)
|
||
* int prn I satellite prn/slot number
|
||
* return : satellite number (0:error)
|
||
*-----------------------------------------------------------------------------*/
|
||
extern int satno(int sys, int prn)
|
||
{
|
||
if (prn <= 0)
|
||
return 0;
|
||
switch (sys)
|
||
{
|
||
case SYS_GPS:
|
||
if (prn < MINPRNGPS || MAXPRNGPS < prn)
|
||
return 0;
|
||
return prn - MINPRNGPS + 1;
|
||
case SYS_GLO:
|
||
if (prn < MINPRNGLO || MAXPRNGLO < prn)
|
||
return 0;
|
||
return NSATGPS + prn - MINPRNGLO + 1;
|
||
case SYS_GAL:
|
||
if (prn < MINPRNGAL || MAXPRNGAL < prn)
|
||
return 0;
|
||
return NSATGPS + NSATGLO + prn - MINPRNGAL + 1;
|
||
case SYS_QZS:
|
||
if (prn < MINPRNQZS || MAXPRNQZS < prn)
|
||
return 0;
|
||
return NSATGPS + NSATGLO + NSATGAL + prn - MINPRNQZS + 1;
|
||
case SYS_CMP:
|
||
if (prn < MINPRNCMP || MAXPRNCMP < prn)
|
||
return 0;
|
||
return NSATGPS + NSATGLO + NSATGAL + NSATQZS + prn - MINPRNCMP + 1;
|
||
case SYS_IRN:
|
||
if (prn < MINPRNIRN || MAXPRNIRN < prn)
|
||
return 0;
|
||
return NSATGPS + NSATGLO + NSATGAL + NSATQZS + NSATCMP + prn - MINPRNIRN + 1;
|
||
case SYS_LEO:
|
||
if (prn < MINPRNLEO || MAXPRNLEO < prn)
|
||
return 0;
|
||
return NSATGPS + NSATGLO + NSATGAL + NSATQZS + NSATCMP + NSATIRN +
|
||
prn - MINPRNLEO + 1;
|
||
case SYS_SBS:
|
||
if (prn < MINPRNSBS || MAXPRNSBS < prn)
|
||
return 0;
|
||
return NSATGPS + NSATGLO + NSATGAL + NSATQZS + NSATCMP + NSATIRN + NSATLEO +
|
||
prn - MINPRNSBS + 1;
|
||
}
|
||
return 0;
|
||
}
|
||
/* satellite number to satellite system ----------------------------------------
|
||
* convert satellite number to satellite system
|
||
* args : int sat I satellite number (1-MAXSAT)
|
||
* int *prn IO satellite prn/slot number (NULL: no output)
|
||
* return : satellite system (SYS_GPS,SYS_GLO,...)
|
||
*-----------------------------------------------------------------------------*/
|
||
extern int satsys(int sat, int *prn)
|
||
{
|
||
int sys = SYS_NONE;
|
||
if (sat <= 0 || MAXSAT < sat)
|
||
sat = 0;
|
||
else if (sat <= NSATGPS)
|
||
{
|
||
sys = SYS_GPS;
|
||
sat += MINPRNGPS - 1;
|
||
}
|
||
else if ((sat -= NSATGPS) <= NSATGLO)
|
||
{
|
||
sys = SYS_GLO;
|
||
sat += MINPRNGLO - 1;
|
||
}
|
||
else if ((sat -= NSATGLO) <= NSATGAL)
|
||
{
|
||
sys = SYS_GAL;
|
||
sat += MINPRNGAL - 1;
|
||
}
|
||
else if ((sat -= NSATGAL) <= NSATQZS)
|
||
{
|
||
sys = SYS_QZS;
|
||
sat += MINPRNQZS - 1;
|
||
}
|
||
else if ((sat -= NSATQZS) <= NSATCMP)
|
||
{
|
||
sys = SYS_CMP;
|
||
sat += MINPRNCMP - 1;
|
||
}
|
||
else if ((sat -= NSATCMP) <= NSATIRN)
|
||
{
|
||
sys = SYS_IRN;
|
||
sat += MINPRNIRN - 1;
|
||
}
|
||
else if ((sat -= NSATIRN) <= NSATLEO)
|
||
{
|
||
sys = SYS_LEO;
|
||
sat += MINPRNLEO - 1;
|
||
}
|
||
else if ((sat -= NSATLEO) <= NSATSBS)
|
||
{
|
||
sys = SYS_SBS;
|
||
sat += MINPRNSBS - 1;
|
||
}
|
||
else
|
||
sat = 0;
|
||
if (prn)
|
||
*prn = sat;
|
||
return sys;
|
||
}
|
||
/* satellite id to satellite number --------------------------------------------
|
||
* convert satellite id to satellite number
|
||
* args : char *id I satellite id (nn,Gnn,Rnn,Enn,Jnn,Cnn,Inn or Snn)
|
||
* return : satellite number (0: error)
|
||
* notes : 120-142 and 193-199 are also recognized as sbas and qzss
|
||
*-----------------------------------------------------------------------------*/
|
||
extern int satid2no(const char *id)
|
||
{
|
||
int sys, prn;
|
||
char code;
|
||
|
||
if (sscanf(id, "%d", &prn) == 1)
|
||
{
|
||
if (MINPRNGPS <= prn && prn <= MAXPRNGPS)
|
||
sys = SYS_GPS;
|
||
else if (MINPRNSBS <= prn && prn <= MAXPRNSBS)
|
||
sys = SYS_SBS;
|
||
else if (MINPRNQZS <= prn && prn <= MAXPRNQZS)
|
||
sys = SYS_QZS;
|
||
else
|
||
return 0;
|
||
return satno(sys, prn);
|
||
}
|
||
if (sscanf(id, "%c%d", &code, &prn) < 2)
|
||
return 0;
|
||
|
||
switch (code)
|
||
{
|
||
case 'G':
|
||
sys = SYS_GPS;
|
||
prn += MINPRNGPS - 1;
|
||
break;
|
||
case 'R':
|
||
sys = SYS_GLO;
|
||
prn += MINPRNGLO - 1;
|
||
break;
|
||
case 'E':
|
||
sys = SYS_GAL;
|
||
prn += MINPRNGAL - 1;
|
||
break;
|
||
case 'J':
|
||
sys = SYS_QZS;
|
||
prn += MINPRNQZS - 1;
|
||
break;
|
||
case 'C':
|
||
sys = SYS_CMP;
|
||
prn += MINPRNCMP - 1;
|
||
break;
|
||
case 'I':
|
||
sys = SYS_IRN;
|
||
prn += MINPRNIRN - 1;
|
||
break;
|
||
case 'L':
|
||
sys = SYS_LEO;
|
||
prn += MINPRNLEO - 1;
|
||
break;
|
||
case 'S':
|
||
sys = SYS_SBS;
|
||
prn += 100;
|
||
break;
|
||
default:
|
||
return 0;
|
||
}
|
||
return satno(sys, prn);
|
||
}
|
||
/* satellite number to satellite id --------------------------------------------
|
||
* convert satellite number to satellite id
|
||
* args : int sat I satellite number
|
||
* char *id O satellite id (Gnn,Rnn,Enn,Jnn,Cnn,Inn or nnn)
|
||
* return : none
|
||
*-----------------------------------------------------------------------------*/
|
||
extern void satno2id(int sat, char *id)
|
||
{
|
||
int prn;
|
||
switch (satsys(sat, &prn))
|
||
{
|
||
case SYS_GPS:
|
||
sprintf(id, "G%02d", prn - MINPRNGPS + 1);
|
||
return;
|
||
case SYS_GLO:
|
||
sprintf(id, "R%02d", prn - MINPRNGLO + 1);
|
||
return;
|
||
case SYS_GAL:
|
||
sprintf(id, "E%02d", prn - MINPRNGAL + 1);
|
||
return;
|
||
case SYS_QZS:
|
||
sprintf(id, "J%02d", prn - MINPRNQZS + 1);
|
||
return;
|
||
case SYS_CMP:
|
||
sprintf(id, "C%02d", prn - MINPRNCMP + 1);
|
||
return;
|
||
case SYS_IRN:
|
||
sprintf(id, "I%02d", prn - MINPRNIRN + 1);
|
||
return;
|
||
case SYS_LEO:
|
||
sprintf(id, "L%02d", prn - MINPRNLEO + 1);
|
||
return;
|
||
case SYS_SBS:
|
||
sprintf(id, "%03d", prn);
|
||
return;
|
||
}
|
||
strcpy(id, "");
|
||
}
|
||
/* test excluded satellite -----------------------------------------------------
|
||
* test excluded satellite
|
||
* args : int sat I satellite number
|
||
* double var I variance of ephemeris (m^2)
|
||
* int svh I sv health flag
|
||
* prcopt_t *opt I processing options (NULL: not used)
|
||
* return : status (1:excluded,0:not excluded)
|
||
*-----------------------------------------------------------------------------*/
|
||
extern int satexclude(int sat, double var, int svh, const prcopt_t *opt)
|
||
{
|
||
int sys = satsys(sat, NULL);
|
||
|
||
if (svh < 0)
|
||
return 1; /* ephemeris unavailable */
|
||
|
||
if (opt)
|
||
{
|
||
if (opt->exsats[sat - 1] == 1)
|
||
return 1; /* excluded satellite */
|
||
if (opt->exsats[sat - 1] == 2)
|
||
return 0; /* included satellite */
|
||
if (!(sys & opt->navsys))
|
||
return 1; /* unselected sat sys */
|
||
}
|
||
if (sys == SYS_QZS)
|
||
svh &= 0xFE; /* mask QZSS LEX health */
|
||
if (svh)
|
||
{
|
||
trace(3, "unhealthy satellite: sat=%3d svh=%02X\n", sat, svh);
|
||
return 1;
|
||
}
|
||
if (var > MAX_VAR_EPH)
|
||
{
|
||
trace(3, "invalid ura satellite: sat=%3d ura=%.2f\n", sat, sqrt(var));
|
||
return 1;
|
||
}
|
||
return 0;
|
||
}
|
||
/* test SNR mask ---------------------------------------------------------------
|
||
* test SNR mask
|
||
* args : int base I rover or base-station (0:rover,1:base station)
|
||
* int idx I frequency index (0:L1,1:L2,2:L3,...)
|
||
* double el I elevation angle (rad)
|
||
* double snr I C/N0 (dBHz)
|
||
* snrmask_t *mask I SNR mask
|
||
* return : status (1:masked,0:unmasked)
|
||
*-----------------------------------------------------------------------------*/
|
||
extern int testsnr(int base, int idx, double el, double snr,
|
||
const snrmask_t *mask)
|
||
{
|
||
double minsnr, a;
|
||
int i;
|
||
|
||
if (!mask->ena[base] || idx < 0 || idx >= NFREQ)
|
||
return 0;
|
||
|
||
a = (el * R2D + 5.0) / 10.0;
|
||
i = (int)floor(a);
|
||
a -= i;
|
||
if (i < 1)
|
||
minsnr = mask->mask[idx][0];
|
||
else if (i > 8)
|
||
minsnr = mask->mask[idx][8];
|
||
else
|
||
minsnr = (1.0 - a) * mask->mask[idx][i - 1] + a * mask->mask[idx][i];
|
||
|
||
return snr < minsnr;
|
||
}
|
||
/* obs type string to obs code -------------------------------------------------
|
||
* convert obs code type string to obs code
|
||
* args : char *str I obs code string ("1C","1P","1Y",...)
|
||
* return : obs code (CODE_???)
|
||
* notes : obs codes are based on RINEX 3.04
|
||
*-----------------------------------------------------------------------------*/
|
||
extern uint8_t obs2code(const char *obs)
|
||
{
|
||
int i;
|
||
|
||
for (i = 1; *obscodes[i]; i++)
|
||
{
|
||
if (strcmp(obscodes[i], obs))
|
||
continue;
|
||
return (uint8_t)i;
|
||
}
|
||
return CODE_NONE;
|
||
}
|
||
/* obs code to obs code string -------------------------------------------------
|
||
* convert obs code to obs code string
|
||
* args : uint8_t code I obs code (CODE_???)
|
||
* return : obs code string ("1C","1P","1P",...)
|
||
* notes : obs codes are based on RINEX 3.04
|
||
*-----------------------------------------------------------------------------*/
|
||
extern char *code2obs(uint8_t code)
|
||
{
|
||
if (code <= CODE_NONE || MAXCODE < code)
|
||
return "";
|
||
return obscodes[code];
|
||
}
|
||
/* GPS obs code to frequency -------------------------------------------------*/
|
||
static int code2freq_GPS(uint8_t code, double *freq)
|
||
{
|
||
char *obs = code2obs(code);
|
||
|
||
switch (obs[0])
|
||
{
|
||
case '1':
|
||
*freq = FREQL1;
|
||
return 0; /* L1 */
|
||
case '2':
|
||
*freq = FREQL2;
|
||
return 1; /* L2 */
|
||
case '5':
|
||
*freq = FREQL5;
|
||
return 2; /* L5 */
|
||
}
|
||
return -1;
|
||
}
|
||
/* GLONASS obs code to frequency ---------------------------------------------*/
|
||
static int code2freq_GLO(uint8_t code, int fcn, double *freq)
|
||
{
|
||
char *obs = code2obs(code);
|
||
|
||
if (fcn < -7 || fcn > 6)
|
||
return -1;
|
||
|
||
switch (obs[0])
|
||
{
|
||
case '1':
|
||
*freq = FREQ1_GLO + DFRQ1_GLO * fcn;
|
||
return 0; /* G1 */
|
||
case '2':
|
||
*freq = FREQ2_GLO + DFRQ2_GLO * fcn;
|
||
return 1; /* G2 */
|
||
case '3':
|
||
*freq = FREQ3_GLO;
|
||
return 2; /* G3 */
|
||
case '4':
|
||
*freq = FREQ1a_GLO;
|
||
return 0; /* G1a */
|
||
case '6':
|
||
*freq = FREQ2a_GLO;
|
||
return 1; /* G2a */
|
||
}
|
||
return -1;
|
||
}
|
||
/* Galileo obs code to frequency ---------------------------------------------*/
|
||
static int code2freq_GAL(uint8_t code, double *freq)
|
||
{
|
||
char *obs = code2obs(code);
|
||
|
||
switch (obs[0])
|
||
{
|
||
case '1':
|
||
*freq = FREQL1;
|
||
return 0; /* E1 */
|
||
case '7':
|
||
*freq = FREQE5b;
|
||
return 1; /* E5b */
|
||
case '5':
|
||
*freq = FREQL5;
|
||
return 2; /* E5a */
|
||
case '6':
|
||
*freq = FREQL6;
|
||
return 3; /* E6 */
|
||
case '8':
|
||
*freq = FREQE5ab;
|
||
return 4; /* E5ab */
|
||
}
|
||
return -1;
|
||
}
|
||
|
||
/* QZSS obs code to frequency ------------------------------------------------*/
|
||
static int code2freq_QZS(uint8_t code, double *freq)
|
||
{
|
||
char *obs = code2obs(code);
|
||
|
||
switch (obs[0])
|
||
{
|
||
case '1':
|
||
*freq = FREQL1;
|
||
return 0; /* L1 */
|
||
case '2':
|
||
*freq = FREQL2;
|
||
return 1; /* L2 */
|
||
case '5':
|
||
*freq = FREQL5;
|
||
return 2; /* L5 */
|
||
case '6':
|
||
*freq = FREQL6;
|
||
return 3; /* L6 */
|
||
}
|
||
return -1;
|
||
}
|
||
/* SBAS obs code to frequency ------------------------------------------------*/
|
||
static int code2freq_SBS(uint8_t code, double *freq)
|
||
{
|
||
char *obs = code2obs(code);
|
||
|
||
switch (obs[0])
|
||
{
|
||
case '1':
|
||
*freq = FREQL1;
|
||
return 0; /* L1 */
|
||
case '5':
|
||
*freq = FREQL5;
|
||
return 1; /* L5 */
|
||
}
|
||
return -1;
|
||
}
|
||
/* BDS obs code to frequency -------------------------------------------------*/
|
||
static int code2freq_BDS(uint8_t code, double *freq)
|
||
{
|
||
char *obs = code2obs(code);
|
||
|
||
switch (obs[0])
|
||
{
|
||
case '1':
|
||
*freq = FREQL1;
|
||
return 0; /* B1C ---->C1(BDS3)*/
|
||
case '2':
|
||
*freq = FREQ1_CMP;
|
||
return 0; /* B1I---->C2(BDS2,BDS3) */
|
||
case '7':
|
||
*freq = FREQ2_CMP;
|
||
return 1; /* B2I/B2b ---->C7(BDS2,BDS3)*/
|
||
case '5':
|
||
*freq = FREQL5;
|
||
return 2; /* B2a ----->C5(BDS3)*/
|
||
case '6':
|
||
*freq = FREQ3_CMP;
|
||
return 3; /* B3 ----C6(BDS2)*/
|
||
case '8':
|
||
*freq = FREQE5ab;
|
||
return 4; /* B2ab----C8,B2(BDS3) */
|
||
}
|
||
return -1;
|
||
}
|
||
|
||
/* NavIC obs code to frequency -----------------------------------------------*/
|
||
static int code2freq_IRN(uint8_t code, double *freq)
|
||
{
|
||
char *obs = code2obs(code);
|
||
|
||
switch (obs[0])
|
||
{
|
||
case '5':
|
||
*freq = FREQL5;
|
||
return 0; /* L5 */
|
||
case '9':
|
||
*freq = FREQs;
|
||
return 1; /* S */
|
||
}
|
||
return -1;
|
||
}
|
||
/* system and obs code to frequency index --------------------------------------
|
||
* convert system and obs code to frequency index
|
||
* args : int sys I satellite system (SYS_???)
|
||
* uint8_t code I obs code (CODE_???)
|
||
* return : frequency index (-1: error)
|
||
* 0 1 2 3 4
|
||
* --------------------------------------
|
||
* GPS L1 L2 L5 - -
|
||
* GLONASS G1 G2 G3 - - (G1=G1,G1a,G2=G2,G2a)
|
||
* Galileo E1 E5b E5a E6 E5ab
|
||
* QZSS L1 L2 L5 L6 -
|
||
* SBAS L1 - L5 - -
|
||
* BDS B1 B2 B2a B3 B2ab (B1=B1I,B1C,B2=B2I,B2b)
|
||
* NavIC L5 S - - -
|
||
*-----------------------------------------------------------------------------*/
|
||
extern int code2idx(int sys, uint8_t code)
|
||
{
|
||
double freq;
|
||
|
||
switch (sys)
|
||
{
|
||
case SYS_GPS:
|
||
return code2freq_GPS(code, &freq);
|
||
case SYS_GLO:
|
||
return code2freq_GLO(code, 0, &freq);
|
||
case SYS_GAL:
|
||
return code2freq_GAL(code, &freq);
|
||
case SYS_QZS:
|
||
return code2freq_QZS(code, &freq);
|
||
case SYS_SBS:
|
||
return code2freq_SBS(code, &freq);
|
||
case SYS_CMP:
|
||
return code2freq_BDS(code, &freq);
|
||
case SYS_IRN:
|
||
return code2freq_IRN(code, &freq);
|
||
}
|
||
return -1;
|
||
}
|
||
/* system and obs code to frequency --------------------------------------------
|
||
* convert system and obs code to carrier frequency
|
||
* args : int sys I satellite system (SYS_???)
|
||
* uint8_t code I obs code (CODE_???)
|
||
* int fcn I frequency channel number for GLONASS
|
||
* return : carrier frequency (Hz) (0.0: error)
|
||
*-----------------------------------------------------------------------------*/
|
||
extern double code2freq(int sys, uint8_t code, int fcn)
|
||
{
|
||
double freq = 0.0;
|
||
|
||
switch (sys)
|
||
{
|
||
case SYS_GPS:
|
||
(void)code2freq_GPS(code, &freq);
|
||
break;
|
||
case SYS_GLO:
|
||
(void)code2freq_GLO(code, fcn, &freq);
|
||
break;
|
||
case SYS_GAL:
|
||
(void)code2freq_GAL(code, &freq);
|
||
break;
|
||
case SYS_QZS:
|
||
(void)code2freq_QZS(code, &freq);
|
||
break;
|
||
case SYS_SBS:
|
||
(void)code2freq_SBS(code, &freq);
|
||
break;
|
||
case SYS_CMP:
|
||
(void)code2freq_BDS(code, &freq);
|
||
break;
|
||
case SYS_IRN:
|
||
(void)code2freq_IRN(code, &freq);
|
||
break;
|
||
}
|
||
return freq;
|
||
}
|
||
/* satellite and obs code to frequency -----------------------------------------
|
||
* convert satellite and obs code to carrier frequency
|
||
* args : int sat I satellite number
|
||
* uint8_t code I obs code (CODE_???)
|
||
* nav_t *nav_t I navigation data for GLONASS (NULL: not used)
|
||
* return : carrier frequency (Hz) (0.0: error)
|
||
*-----------------------------------------------------------------------------*/
|
||
extern double sat2freq(int sat, uint8_t code, const nav_t *nav)
|
||
{
|
||
int i, fcn = 0, sys, prn;
|
||
|
||
sys = satsys(sat, &prn);
|
||
|
||
if (sys == SYS_GLO)
|
||
{
|
||
if (!nav)
|
||
return 0.0;
|
||
for (i = 0; i < nav->ng; i++)
|
||
{
|
||
if (nav->geph[i].sat == sat)
|
||
break;
|
||
}
|
||
if (i < nav->ng)
|
||
{
|
||
fcn = nav->geph[i].frq;
|
||
}
|
||
else if (nav->glo_fcn[prn - 1] > 0)
|
||
{
|
||
fcn = nav->glo_fcn[prn - 1] - 8;
|
||
}
|
||
else
|
||
return 0.0;
|
||
}
|
||
return code2freq(sys, code, fcn);
|
||
}
|
||
/* set code priority -----------------------------------------------------------
|
||
* set code priority for multiple codes in a frequency
|
||
* args : int sys I system (or of SYS_???)
|
||
* int idx I frequency index (0- )
|
||
* char *pri I priority of codes (series of code characters)
|
||
* (higher priority precedes lower)
|
||
* return : none
|
||
*-----------------------------------------------------------------------------*/
|
||
extern void setcodepri(int sys, int idx, const char *pri)
|
||
{
|
||
trace(3, "setcodepri:sys=%d idx=%d pri=%s\n", sys, idx, pri);
|
||
|
||
if (idx < 0 || idx >= MAXFREQ)
|
||
return;
|
||
if (sys & SYS_GPS)
|
||
strcpy(codepris[0][idx], pri);
|
||
if (sys & SYS_GLO)
|
||
strcpy(codepris[1][idx], pri);
|
||
if (sys & SYS_GAL)
|
||
strcpy(codepris[2][idx], pri);
|
||
if (sys & SYS_QZS)
|
||
strcpy(codepris[3][idx], pri);
|
||
if (sys & SYS_SBS)
|
||
strcpy(codepris[4][idx], pri);
|
||
if (sys & SYS_CMP)
|
||
strcpy(codepris[5][idx], pri);
|
||
if (sys & SYS_IRN)
|
||
strcpy(codepris[6][idx], pri);
|
||
}
|
||
/* get code priority -----------------------------------------------------------
|
||
* get code priority for multiple codes in a frequency
|
||
* args : int sys I system (SYS_???)
|
||
* uint8_t code I obs code (CODE_???)
|
||
* char *opt I code options (NULL:no option)
|
||
* return : priority (15:highest-1:lowest,0:error)
|
||
*-----------------------------------------------------------------------------*/
|
||
extern int getcodepri(int sys, uint8_t code, const char *opt)
|
||
{
|
||
const char *p, *optstr;
|
||
char *obs, str[8] = "";
|
||
int i, j;
|
||
|
||
switch (sys)
|
||
{
|
||
case SYS_GPS:
|
||
i = 0;
|
||
optstr = "-GL%2s";
|
||
break;
|
||
case SYS_GLO:
|
||
i = 1;
|
||
optstr = "-RL%2s";
|
||
break;
|
||
case SYS_GAL:
|
||
i = 2;
|
||
optstr = "-EL%2s";
|
||
break;
|
||
case SYS_QZS:
|
||
i = 3;
|
||
optstr = "-JL%2s";
|
||
break;
|
||
case SYS_SBS:
|
||
i = 4;
|
||
optstr = "-SL%2s";
|
||
break;
|
||
case SYS_CMP:
|
||
i = 5;
|
||
optstr = "-CL%2s";
|
||
break;
|
||
case SYS_IRN:
|
||
i = 6;
|
||
optstr = "-IL%2s";
|
||
break;
|
||
default:
|
||
return 0;
|
||
}
|
||
if ((j = code2idx(sys, code)) < 0)
|
||
return 0;
|
||
obs = code2obs(code);
|
||
|
||
/* parse code options */
|
||
for (p = opt; p && (p = strchr(p, '-')); p++)
|
||
{
|
||
if (sscanf(p, optstr, str) < 1 || str[0] != obs[0])
|
||
continue;
|
||
return str[1] == obs[1] ? 15 : 0;
|
||
}
|
||
/* search code priority */
|
||
return (p = strchr(codepris[i][j], obs[1])) ? 14 - (int)(p - codepris[i][j]) : 0;
|
||
}
|
||
/* extract unsigned/signed bits ------------------------------------------------
|
||
* extract unsigned/signed bits from byte data
|
||
* args : uint8_t *buff I byte data
|
||
* int pos I bit position from start of data (bits)
|
||
* int len I bit length (bits) (len<=32)
|
||
* return : extracted unsigned/signed bits
|
||
*-----------------------------------------------------------------------------*/
|
||
extern uint32_t getbitu(const uint8_t *buff, int pos, int len)
|
||
{
|
||
uint32_t bits = 0;
|
||
int i;
|
||
for (i = pos; i < pos + len; i++)
|
||
bits = (bits << 1) + ((buff[i / 8] >> (7 - i % 8)) & 1u);
|
||
return bits;
|
||
}
|
||
extern int32_t getbits(const uint8_t *buff, int pos, int len)
|
||
{
|
||
uint32_t bits = getbitu(buff, pos, len);
|
||
if (len <= 0 || 32 <= len || !(bits & (1u << (len - 1))))
|
||
return (int32_t)bits;
|
||
return (int32_t)(bits | (~0u << len)); /* extend sign */
|
||
}
|
||
/* set unsigned/signed bits ----------------------------------------------------
|
||
* set unsigned/signed bits to byte data
|
||
* args : uint8_t *buff IO byte data
|
||
* int pos I bit position from start of data (bits)
|
||
* int len I bit length (bits) (len<=32)
|
||
* [u]int32_t data I unsigned/signed data
|
||
* return : none
|
||
*-----------------------------------------------------------------------------*/
|
||
extern void setbitu(uint8_t *buff, int pos, int len, uint32_t data)
|
||
{
|
||
uint32_t mask = 1u << (len - 1);
|
||
int i;
|
||
if (len <= 0 || 32 < len)
|
||
return;
|
||
for (i = pos; i < pos + len; i++, mask >>= 1)
|
||
{
|
||
if (data & mask)
|
||
buff[i / 8] |= 1u << (7 - i % 8);
|
||
else
|
||
buff[i / 8] &= ~(1u << (7 - i % 8));
|
||
}
|
||
}
|
||
extern void setbits(uint8_t *buff, int pos, int len, int32_t data)
|
||
{
|
||
if (data < 0)
|
||
data |= 1 << (len - 1);
|
||
else
|
||
data &= ~(1 << (len - 1)); /* set sign bit */
|
||
setbitu(buff, pos, len, (uint32_t)data);
|
||
}
|
||
/* crc-32 parity ---------------------------------------------------------------
|
||
* compute crc-32 parity for novatel raw
|
||
* args : uint8_t *buff I data
|
||
* int len I data length (bytes)
|
||
* return : crc-32 parity
|
||
* notes : see NovAtel OEMV firmware manual 1.7 32-bit CRC
|
||
*-----------------------------------------------------------------------------*/
|
||
extern uint32_t rtk_crc32(const uint8_t *buff, int len)
|
||
{
|
||
uint32_t crc = 0;
|
||
int i, j;
|
||
|
||
trace(4, "rtk_crc32: len=%d\n", len);
|
||
|
||
for (i = 0; i < len; i++)
|
||
{
|
||
crc ^= buff[i];
|
||
for (j = 0; j < 8; j++)
|
||
{
|
||
if (crc & 1)
|
||
crc = (crc >> 1) ^ POLYCRC32;
|
||
else
|
||
crc >>= 1;
|
||
}
|
||
}
|
||
return crc;
|
||
}
|
||
/* crc-24q parity --------------------------------------------------------------
|
||
* compute crc-24q parity for sbas, rtcm3
|
||
* args : uint8_t *buff I data
|
||
* int len I data length (bytes)
|
||
* return : crc-24Q parity
|
||
* notes : see reference [2] A.4.3.3 Parity
|
||
*-----------------------------------------------------------------------------*/
|
||
extern uint32_t rtk_crc24q(const uint8_t *buff, int len)
|
||
{
|
||
uint32_t crc = 0;
|
||
int i;
|
||
|
||
trace(4, "rtk_crc24q: len=%d\n", len);
|
||
|
||
for (i = 0; i < len; i++)
|
||
crc = ((crc << 8) & 0xFFFFFF) ^ tbl_CRC24Q[(crc >> 16) ^ buff[i]];
|
||
return crc;
|
||
}
|
||
/* crc-16 parity ---------------------------------------------------------------
|
||
* compute crc-16 parity for binex, nvs
|
||
* args : uint8_t *buff I data
|
||
* int len I data length (bytes)
|
||
* return : crc-16 parity
|
||
* notes : see reference [10] A.3.
|
||
*-----------------------------------------------------------------------------*/
|
||
extern uint16_t rtk_crc16(const uint8_t *buff, int len)
|
||
{
|
||
uint16_t crc = 0;
|
||
int i;
|
||
|
||
trace(4, "rtk_crc16: len=%d\n", len);
|
||
|
||
for (i = 0; i < len; i++)
|
||
{
|
||
crc = (crc << 8) ^ tbl_CRC16[((crc >> 8) ^ buff[i]) & 0xFF];
|
||
}
|
||
return crc;
|
||
}
|
||
/* decode navigation data word -------------------------------------------------
|
||
* check party and decode navigation data word
|
||
* args : uint32_t word I navigation data word (2+30bit)
|
||
* (previous word D29*-30* + current word D1-30)
|
||
* uint8_t *data O decoded navigation data without parity
|
||
* (8bitx3)
|
||
* return : status (1:ok,0:parity error)
|
||
* notes : see reference [1] 20.3.5.2 user parity algorithm
|
||
*-----------------------------------------------------------------------------*/
|
||
extern int decode_word(uint32_t word, uint8_t *data)
|
||
{
|
||
const uint32_t hamming[] = {
|
||
0xBB1F3480, 0x5D8F9A40, 0xAEC7CD00, 0x5763E680, 0x6BB1F340, 0x8B7A89C0};
|
||
uint32_t parity = 0, w;
|
||
int i;
|
||
|
||
trace(5, "decodeword: word=%08x\n", word);
|
||
|
||
if (word & 0x40000000)
|
||
word ^= 0x3FFFFFC0;
|
||
|
||
for (i = 0; i < 6; i++)
|
||
{
|
||
parity <<= 1;
|
||
for (w = (word & hamming[i]) >> 6; w; w >>= 1)
|
||
parity ^= w & 1;
|
||
}
|
||
if (parity != (word & 0x3F))
|
||
return 0;
|
||
|
||
for (i = 0; i < 3; i++)
|
||
data[i] = (uint8_t)(word >> (22 - i * 8));
|
||
return 1;
|
||
}
|
||
/* new matrix ------------------------------------------------------------------
|
||
* allocate memory of matrix
|
||
* args : int n,m I number of rows and columns of matrix
|
||
* return : matrix pointer (if n<=0 or m<=0, return NULL)
|
||
*-----------------------------------------------------------------------------*/
|
||
extern double *mat(int n, int m)
|
||
{
|
||
double *p;
|
||
|
||
if (n <= 0 || m <= 0)
|
||
return NULL;
|
||
if (!(p = (double *)rt_malloc(sizeof(double) * n * m)))
|
||
{
|
||
fatalerr("matrix memory allocation error: n=%d,m=%d\n", n, m);
|
||
}
|
||
return p;
|
||
}
|
||
/* new integer matrix ----------------------------------------------------------
|
||
* allocate memory of integer matrix
|
||
* args : int n,m I number of rows and columns of matrix
|
||
* return : matrix pointer (if n<=0 or m<=0, return NULL)
|
||
*-----------------------------------------------------------------------------*/
|
||
extern int *imat(int n, int m)
|
||
{
|
||
int *p;
|
||
|
||
if (n <= 0 || m <= 0)
|
||
return NULL;
|
||
if (!(p = (int *)rt_malloc(sizeof(int) * n * m)))
|
||
{
|
||
fatalerr("integer matrix memory allocation error: n=%d,m=%d\n", n, m);
|
||
}
|
||
return p;
|
||
}
|
||
/* zero matrix -----------------------------------------------------------------
|
||
* generate new zero matrix
|
||
* args : int n,m I number of rows and columns of matrix
|
||
* return : matrix pointer (if n<=0 or m<=0, return NULL)
|
||
*-----------------------------------------------------------------------------*/
|
||
extern double *zeros(int n, int m)
|
||
{
|
||
double *p;
|
||
|
||
#if NOCALLOC
|
||
if ((p = mat(n, m)))
|
||
for (n = n * m - 1; n >= 0; n--)
|
||
p[n] = 0.0;
|
||
#else
|
||
if (n <= 0 || m <= 0)
|
||
return NULL;
|
||
if (!(p = (double *)rt_calloc( n * m,sizeof(double))))
|
||
{
|
||
fatalerr("matrix memory allocation error: n=%d,m=%d\n", n, m);
|
||
}
|
||
#endif
|
||
return p;
|
||
}
|
||
/* identity matrix -------------------------------------------------------------
|
||
* generate new identity matrix
|
||
* args : int n I number of rows and columns of matrix
|
||
* return : matrix pointer (if n<=0, return NULL)
|
||
*-----------------------------------------------------------------------------*/
|
||
extern double *eye(int n)
|
||
{
|
||
double *p;
|
||
int i;
|
||
|
||
if ((p = zeros(n, n)))
|
||
for (i = 0; i < n; i++)
|
||
p[i + i * n] = 1.0;
|
||
return p;
|
||
}
|
||
/* inner product ---------------------------------------------------------------
|
||
* inner product of vectors
|
||
* args : double *a,*b I vector a,b (n x 1)
|
||
* int n I size of vector a,b
|
||
* return : a'*b
|
||
*-----------------------------------------------------------------------------*/
|
||
extern double dot(const double *a, const double *b, int n)
|
||
{
|
||
double c = 0.0;
|
||
|
||
while (--n >= 0)
|
||
c += a[n] * b[n];
|
||
return c;
|
||
}
|
||
/* euclid norm -----------------------------------------------------------------
|
||
* euclid norm of vector
|
||
* args : double *a I vector a (n x 1)
|
||
* int n I size of vector a
|
||
* return : || a ||
|
||
*-----------------------------------------------------------------------------*/
|
||
extern double norm(const double *a, int n)
|
||
{
|
||
return sqrt(dot(a, a, n));
|
||
}
|
||
/* outer product of 3d vectors -------------------------------------------------
|
||
* outer product of 3d vectors
|
||
* args : double *a,*b I vector a,b (3 x 1)
|
||
* double *c O outer product (a x b) (3 x 1)
|
||
* return : none
|
||
*-----------------------------------------------------------------------------*/
|
||
extern void cross3(const double *a, const double *b, double *c)
|
||
{
|
||
c[0] = a[1] * b[2] - a[2] * b[1];
|
||
c[1] = a[2] * b[0] - a[0] * b[2];
|
||
c[2] = a[0] * b[1] - a[1] * b[0];
|
||
}
|
||
/* normalize 3d vector ---------------------------------------------------------
|
||
* normalize 3d vector
|
||
* args : double *a I vector a (3 x 1)
|
||
* double *b O normlized vector (3 x 1) || b || = 1
|
||
* return : status (1:ok,0:error)
|
||
*-----------------------------------------------------------------------------*/
|
||
extern int normv3(const double *a, double *b)
|
||
{
|
||
double r;
|
||
if ((r = norm(a, 3)) <= 0.0)
|
||
return 0;
|
||
b[0] = a[0] / r;
|
||
b[1] = a[1] / r;
|
||
b[2] = a[2] / r;
|
||
return 1;
|
||
}
|
||
/* copy matrix -----------------------------------------------------------------
|
||
* copy matrix
|
||
* args : double *A O destination matrix A (n x m)
|
||
* double *B I source matrix B (n x m)
|
||
* int n,m I number of rows and columns of matrix
|
||
* return : none
|
||
*-----------------------------------------------------------------------------*/
|
||
extern void matcpy(double *A, const double *B, int n, int m)
|
||
{
|
||
memcpy(A, B, sizeof(double) * n * m);
|
||
}
|
||
|
||
/* multiply matrix -----------------------------------------------------------
|
||
<EFBFBD>ڶ<EFBFBD>RTKLIB<EFBFBD><EFBFBD><EFBFBD>ж<EFBFBD><EFBFBD>ο<EFBFBD><EFBFBD><EFBFBD>ʱһ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>õ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>˺<EFBFBD><EFBFBD><EFBFBD>matmul<EFBFBD><EFBFBD>
|
||
|
||
extern void matmul(const char *tr, int n, int k, int m, double alpha, const double *A, const double *B, double beta, double *C)
|
||
|
||
<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ϊ<EFBFBD><EFBFBD>C=alpha*A*B+beta*C<><43>
|
||
|
||
<EFBFBD><EFBFBD><EFBFBD><EFBFBD>trΪ<EFBFBD>Ƿ<EFBFBD>ת<EFBFBD>õı<EFBFBD>־<EFBFBD><EFBFBD>
|
||
|
||
n<EFBFBD><EFBFBD>k<EFBFBD><EFBFBD>m<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ĵ<EFBFBD>С<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>˵<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ӧ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ĸ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ˣ<EFBFBD><EFBFBD><EFBFBD>һ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>б<EFBFBD>Ȼ<EFBFBD><EFBFBD><EFBFBD>ڵڶ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>У<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ϳ<EFBFBD><EFBFBD>Ա<EFBFBD>ʾ<EFBFBD><EFBFBD>
|
||
|
||
n<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>һ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>У<EFBFBD>k<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ڶ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>У<EFBFBD>m<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>һ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>к͵ڶ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>С<EFBFBD>
|
||
|
||
<EFBFBD><EFBFBD><EFBFBD><EFBFBD>֮<EFBFBD><EFBFBD><EFBFBD><EFBFBD>n<EFBFBD><EFBFBD>k<EFBFBD><EFBFBD><EFBFBD><EFBFBD>mǰ<EFBFBD>棬<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>˳<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʵ<EFBFBD>Ǿ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>һ<EFBFBD><EFBFBD>Ҫѭ<EFBFBD><EFBFBD>n*k<>Σ<EFBFBD><CEA3>ӱ<EFBFBD><D3B1>̵<EFBFBD>˳<EFBFBD><CBB3><EFBFBD><EFBFBD><EFBFBD>ŵġ<C5B5>
|
||
*/
|
||
extern void matmul(const char *tr, int n, int k, int m, double alpha,
|
||
const double *A, const double *B, double beta, double *C)
|
||
{
|
||
double d;
|
||
int i, j, x, f = tr[0] == 'N' ? (tr[1] == 'N' ? 1 : 2) : (tr[1] == 'N' ? 3 : 4);
|
||
|
||
for (i = 0; i < n; i++)
|
||
for (j = 0; j < k; j++)
|
||
{
|
||
d = 0.0;
|
||
switch (f)
|
||
{
|
||
case 1:
|
||
for (x = 0; x < m; x++)
|
||
d += A[i + x * n] * B[x + j * m];
|
||
break;
|
||
case 2:
|
||
for (x = 0; x < m; x++)
|
||
d += A[i + x * n] * B[j + x * k];
|
||
break;
|
||
case 3:
|
||
for (x = 0; x < m; x++)
|
||
d += A[x + i * m] * B[x + j * m];
|
||
break;
|
||
case 4:
|
||
for (x = 0; x < m; x++)
|
||
d += A[x + i * m] * B[j + x * k];
|
||
break;
|
||
}
|
||
if (beta == 0.0)
|
||
C[i + j * n] = alpha * d;
|
||
else
|
||
C[i + j * n] = alpha * d + beta * C[i + j * n];
|
||
}
|
||
}
|
||
/* LU decomposition ----------------------------------------------------------*/
|
||
static int ludcmp(double *A, int n, int *indx, double *d)
|
||
{
|
||
double big, s, tmp, *vv = mat(n, 1);
|
||
int i, imax = 0, j, k;
|
||
|
||
*d = 1.0;
|
||
for (i = 0; i < n; i++)
|
||
{
|
||
big = 0.0;
|
||
for (j = 0; j < n; j++)
|
||
if ((tmp = fabs(A[i + j * n])) > big)
|
||
big = tmp;
|
||
if (big > 0.0)
|
||
vv[i] = 1.0 / big;
|
||
else
|
||
{
|
||
free(vv);
|
||
return -1;
|
||
}
|
||
}
|
||
for (j = 0; j < n; j++)
|
||
{
|
||
for (i = 0; i < j; i++)
|
||
{
|
||
s = A[i + j * n];
|
||
for (k = 0; k < i; k++)
|
||
s -= A[i + k * n] * A[k + j * n];
|
||
A[i + j * n] = s;
|
||
}
|
||
big = 0.0;
|
||
for (i = j; i < n; i++)
|
||
{
|
||
s = A[i + j * n];
|
||
for (k = 0; k < j; k++)
|
||
s -= A[i + k * n] * A[k + j * n];
|
||
A[i + j * n] = s;
|
||
if ((tmp = vv[i] * fabs(s)) >= big)
|
||
{
|
||
big = tmp;
|
||
imax = i;
|
||
}
|
||
}
|
||
if (j != imax)
|
||
{
|
||
for (k = 0; k < n; k++)
|
||
{
|
||
tmp = A[imax + k * n];
|
||
A[imax + k * n] = A[j + k * n];
|
||
A[j + k * n] = tmp;
|
||
}
|
||
*d = -(*d);
|
||
vv[imax] = vv[j];
|
||
}
|
||
indx[j] = imax;
|
||
if (A[j + j * n] == 0.0)
|
||
{
|
||
free(vv);
|
||
return -1;
|
||
}
|
||
if (j != n - 1)
|
||
{
|
||
tmp = 1.0 / A[j + j * n];
|
||
for (i = j + 1; i < n; i++)
|
||
A[i + j * n] *= tmp;
|
||
}
|
||
}
|
||
free(vv);
|
||
return 0;
|
||
}
|
||
/* LU back-substitution ------------------------------------------------------*/
|
||
static void lubksb(const double *A, int n, const int *indx, double *b)
|
||
{
|
||
double s;
|
||
int i, ii = -1, ip, j;
|
||
|
||
for (i = 0; i < n; i++)
|
||
{
|
||
ip = indx[i];
|
||
s = b[ip];
|
||
b[ip] = b[i];
|
||
if (ii >= 0)
|
||
for (j = ii; j < i; j++)
|
||
s -= A[i + j * n] * b[j];
|
||
else if (s)
|
||
ii = i;
|
||
b[i] = s;
|
||
}
|
||
for (i = n - 1; i >= 0; i--)
|
||
{
|
||
s = b[i];
|
||
for (j = i + 1; j < n; j++)
|
||
s -= A[i + j * n] * b[j];
|
||
b[i] = s / A[i + i * n];
|
||
}
|
||
}
|
||
/* inverse of matrix ---------------------------------------------------------*/
|
||
extern int matinv(double *A, int n)
|
||
{
|
||
double d, *B;
|
||
int i, j, *indx;
|
||
|
||
indx = imat(n, 1);
|
||
B = mat(n, n);
|
||
matcpy(B, A, n, n);
|
||
if (ludcmp(B, n, indx, &d))
|
||
{
|
||
free(indx);
|
||
free(B);
|
||
return -1;
|
||
}
|
||
for (j = 0; j < n; j++)
|
||
{
|
||
for (i = 0; i < n; i++)
|
||
A[i + j * n] = 0.0;
|
||
A[j + j * n] = 1.0;
|
||
lubksb(B, n, indx, A + j * n);
|
||
}
|
||
free(indx);
|
||
free(B);
|
||
return 0;
|
||
}
|
||
/* solve linear equation -----------------------------------------------------*/
|
||
extern int solve(const char *tr, const double *A, const double *Y, int n,
|
||
int m, double *X)
|
||
{
|
||
double *B = mat(n, n);
|
||
int info;
|
||
|
||
matcpy(B, A, n, n);
|
||
if (!(info = matinv(B, n)))
|
||
matmul(tr[0] == 'N' ? "NN" : "TN", n, m, n, 1.0, B, Y, 0.0, X);
|
||
free(B);
|
||
return info;
|
||
}
|
||
/* end of matrix routines ----------------------------------------------------*/
|
||
|
||
/* least square estimation -----------------------------------------------------
|
||
* least square estimation by solving normal equation (x=(A*A')^-1*A*y)
|
||
* args : double *A I transpose of (weighted) design matrix (n x m)
|
||
* double *y I (weighted) measurements (m x 1)
|
||
* int n,m I number of parameters and measurements (n<=m)
|
||
* double *x O estmated parameters (n x 1)
|
||
* double *Q O esimated parameters covariance matrix (n x n)
|
||
* return : status (0:ok,0>:error)
|
||
* notes : for weighted least square, replace A and y by A*w and w*y (w=W^(1/2))
|
||
* matirix stored by column-major order (fortran convention)
|
||
* <20><><EFBFBD><EFBFBD><EFBFBD>õ<EFBFBD><C3B5><EFBFBD><EFBFBD><EFBFBD> $x=(AAT){-1}Ay$ <20><><EFBFBD>ߵ<EFBFBD>ֵ<EFBFBD><EFBFBD>ֵ<EFBFBD><D6B5>Э<EFBFBD><D0AD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> $Q=(AAT){-1}$
|
||
*-----------------------------------------------------------------------------*/
|
||
extern int lsq(const double *A, const double *y, int n, int m, double *x,
|
||
double *Q)
|
||
{
|
||
double *Ay;
|
||
int info;
|
||
|
||
if (m < n)
|
||
return -1;
|
||
Ay = mat(n, 1);
|
||
matmul("NN", n, 1, m, 1.0, A, y, 0.0, Ay); /* Ay=A*y 1<><31><EFBFBD><EFBFBD><EFBFBD>ȼ<EFBFBD><C8BC><EFBFBD><EFBFBD>Ұ벿<D2B0><EBB2BF> $A_y=Ay$<24><>*/
|
||
matmul("NT", n, n, m, 1.0, A, A, 0.0, Q); /* Q=A*A' 2<><32><EFBFBD>ټ<EFBFBD><D9BC><EFBFBD><EFBFBD><EFBFBD><EFBFBD>벿<EFBFBD><EBB2BF><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ֵ $Q=AA^T$<24><> */
|
||
|
||
if (!(info = matinv(Q, n)))
|
||
matmul("NN", n, 1, n, 1.0, Q, Ay, 0.0, x); /* x=Q^-1*Ay 3<><33><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Q<><51><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> $Q^{-1}$<24><><EFBFBD><EFBFBD><EFBFBD>Դ洢<D4B4><E6B4A2> Q<>У<EFBFBD>
|
||
<20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ҳ<EFBFBD> $A_y$<24><><EFBFBD>õ<EFBFBD> x<><78>ֵ*/
|
||
free(Ay);
|
||
return info;
|
||
}
|
||
/* kalman filter ---------------------------------------------------------------
|
||
* kalman filter state update as follows:
|
||
*
|
||
* K=P*H*(H'*P*H+R)^-1, xp=x+K*v, Pp=(I-K*H')*P
|
||
*
|
||
* args : double *x I states vector (n x 1)
|
||
* double *P I covariance matrix of states (n x n)
|
||
* double *H I transpose of design matrix (n x m)
|
||
* double *v I innovation (measurement - model) (m x 1)
|
||
* double *R I covariance matrix of measurement error (m x m)
|
||
* int n,m I number of states and measurements
|
||
* double *xp O states vector after update (n x 1)
|
||
* double *Pp O covariance matrix of states after update (n x n)
|
||
* return : status (0:ok,<0:error)
|
||
* notes : matirix stored by column-major order (fortran convention)
|
||
* if state x[i]==0.0, not updates state x[i]/P[i+i*n]
|
||
* <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>˲<EFBFBD>״̬<D7B4><CCAC><EFBFBD>£<EFBFBD> K=P*H*(H'*P*H+R)^-1, xp=x+K*v, Pp=(I-K*H')*P
|
||
* <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>9<EFBFBD><39><EFBFBD><EFBFBD>
|
||
double *x I ״̬<D7B4><CCAC><EFBFBD><EFBFBD> (n x 1)
|
||
double *P I ״̬<D7B4><CCAC><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Э<EFBFBD><D0AD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> (n x n)
|
||
double *H I <20>۲<EFBFBD><DBB2><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ת<EFBFBD><D7AA> (n x m)
|
||
double *v I ʵ<>ʹ۲<CAB9><DBB2><EFBFBD><EFBFBD><EFBFBD>Ԥ<EFBFBD><D4A4><EFBFBD>۲<EFBFBD><DBB2><EFBFBD><EFBFBD>IJв<C4B2> (measurement - model) (m x 1)
|
||
double *R I <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Э<EFBFBD><D0AD><EFBFBD><EFBFBD> (m x m)
|
||
int n I ״̬<D7B4><CCAC><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
||
int m I <20>۲<EFBFBD>ֵ<EFBFBD><D6B5><EFBFBD><EFBFBD>
|
||
double *xp O <20><><EFBFBD>º<EFBFBD><C2BA><EFBFBD>״̬<D7B4><CCAC><EFBFBD><EFBFBD> (n x 1)
|
||
double *Pp O <20><><EFBFBD>º<EFBFBD><C2BA><EFBFBD>״̬<D7B4><CCAC><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Э<EFBFBD><D0AD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> (n x n)
|
||
<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>:
|
||
int O (0:ok,<0:error)
|
||
<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ǰ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ȵ<EFBFBD>˳<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> (fortran convention)
|
||
*-----------------------------------------------------------------------------*/
|
||
static int filter_(const double *x, const double *P, const double *H,
|
||
const double *v, const double *R, int n, int m,
|
||
double *xp, double *Pp)
|
||
{
|
||
//<2F><><EFBFBD>þ<EFBFBD><C3BE><EFBFBD><EFBFBD><EFBFBD><EFBFBD>㺯<EFBFBD><E3BAAF><EFBFBD><EFBFBD><EFBFBD>չ<EFBFBD>ʽ<EFBFBD><CABD><EFBFBD>о<EFBFBD><D0BE><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
||
double *F = mat(n, m), *Q = mat(m, m), *K = mat(n, m), *I = eye(n);
|
||
int info;
|
||
|
||
matcpy(Q, R, m, m);
|
||
matcpy(xp, x, n, 1);
|
||
matmul("NN", n, m, n, 1.0, P, H, 0.0, F); /* Q=H'*P*H+R */
|
||
matmul("TN", m, m, n, 1.0, H, F, 1.0, Q);
|
||
if (!(info = matinv(Q, m)))
|
||
{
|
||
matmul("NN", n, m, m, 1.0, F, Q, 0.0, K); /* K=P*H*Q^-1 */
|
||
matmul("NN", n, 1, m, 1.0, K, v, 1.0, xp); /* xp=x+K*v */
|
||
matmul("NT", n, n, m, -1.0, K, H, 1.0, I); /* Pp=(I-K*H')*P */
|
||
matmul("NN", n, n, n, 1.0, I, P, 0.0, Pp);
|
||
}
|
||
free(F);
|
||
free(Q);
|
||
free(K);
|
||
free(I);
|
||
return info;
|
||
}
|
||
/*kalman<61>˲<EFBFBD><CBB2><EFBFBD><EFBFBD><EFBFBD>
|
||
<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>7<EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
||
double *x IO ״̬<D7B4><CCAC><EFBFBD><EFBFBD> (n x 1)
|
||
double *P IO ״̬<D7B4><CCAC><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Э<EFBFBD><D0AD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> (n x n)
|
||
double *H I <20>۲<EFBFBD><DBB2><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ת<EFBFBD><D7AA> (n x m)
|
||
double *v I ʵ<>ʹ۲<CAB9><DBB2><EFBFBD><EFBFBD><EFBFBD>Ԥ<EFBFBD><D4A4><EFBFBD>۲<EFBFBD><DBB2><EFBFBD><EFBFBD>IJв<C4B2> (measurement - model) (m x 1)
|
||
double *R I <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Э<EFBFBD><D0AD><EFBFBD><EFBFBD> (m x m)
|
||
int n I ״̬<D7B4><CCAC><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
||
int m I <20>۲<EFBFBD>ֵ<EFBFBD><D6B5><EFBFBD><EFBFBD>
|
||
<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>:
|
||
int O (0:ok,<0:error)
|
||
*/
|
||
extern int filter(double *x, double *P, const double *H, const double *v,
|
||
const double *R, int n, int m)
|
||
{
|
||
double *x_, *xp_, *P_, *Pp_, *H_;
|
||
int i, j, k, info, *ix;
|
||
|
||
/* create list of non-zero states
|
||
1<><31>ѡ<EFBFBD><D1A1><EFBFBD><EFBFBD>Ҫ<EFBFBD><D2AA><EFBFBD>µ<EFBFBD>״̬ x <20>Ͷ<EFBFBD>Ӧ<EFBFBD><D3A6> P<><50>H <20><> x_<78><5F>p_<70><5F>H_ <20><>*/
|
||
ix = imat(n, 1);
|
||
for (i = k = 0; i < n; i++)
|
||
if (x[i] != 0.0 && P[i + i * n] > 0.0)
|
||
ix[k++] = i;
|
||
x_ = mat(k, 1);
|
||
xp_ = mat(k, 1);
|
||
P_ = mat(k, k);
|
||
Pp_ = mat(k, k);
|
||
H_ = mat(k, m);
|
||
/* compress array by removing zero elements to save computation time */
|
||
for (i = 0; i < k; i++)
|
||
{
|
||
x_[i] = x[ix[i]];
|
||
for (j = 0; j < k; j++)
|
||
P_[i + j * k] = P[ix[i] + ix[j] * n];
|
||
for (j = 0; j < m; j++)
|
||
H_[i + j * k] = H[ix[i] + j * n];
|
||
}
|
||
/* do kalman filter state update on compressed arrays
|
||
2<><32><EFBFBD><EFBFBD><EFBFBD><EFBFBD> filter_ <20><><EFBFBD><EFBFBD>kalman<61>˲<EFBFBD><CBB2><EFBFBD><EFBFBD><EFBFBD>*/
|
||
info = filter_(x_, P_, H_, v, R, k, m, xp_, Pp_);
|
||
/* copy values from compressed arrays back to full arrays
|
||
3<><33><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ֵ<EFBFBD>浽 x<><78>P<EFBFBD><50>*/
|
||
for (i = 0; i < k; i++)
|
||
{
|
||
x[ix[i]] = xp_[i];
|
||
for (j = 0; j < k; j++)
|
||
P[ix[i] + ix[j] * n] = Pp_[i + j * k];
|
||
}
|
||
free(ix);
|
||
free(x_);
|
||
free(xp_);
|
||
free(P_);
|
||
free(Pp_);
|
||
free(H_);
|
||
return info;
|
||
}
|
||
/* smoother --------------------------------------------------------------------
|
||
* combine forward and backward filters by fixed-interval smoother as follows:
|
||
*
|
||
* xs=Qs*(Qf^-1*xf+Qb^-1*xb), Qs=(Qf^-1+Qb^-1)^-1)
|
||
*
|
||
* args : double *xf I forward solutions (n x 1)
|
||
* args : double *Qf I forward solutions covariance matrix (n x n)
|
||
* double *xb I backward solutions (n x 1)
|
||
* double *Qb I backward solutions covariance matrix (n x n)
|
||
* int n I number of solutions
|
||
* double *xs O smoothed solutions (n x 1)
|
||
* double *Qs O smoothed solutions covariance matrix (n x n)
|
||
* return : status (0:ok,0>:error)
|
||
* notes : see reference [4] 5.2
|
||
* matirix stored by column-major order (fortran convention)
|
||
*-----------------------------------------------------------------------------*/
|
||
extern int smoother(const double *xf, const double *Qf, const double *xb,
|
||
const double *Qb, int n, double *xs, double *Qs)
|
||
{
|
||
double *invQf = mat(n, n), *invQb = mat(n, n), *xx = mat(n, 1);
|
||
int i, info = -1;
|
||
|
||
matcpy(invQf, Qf, n, n);
|
||
matcpy(invQb, Qb, n, n);
|
||
if (!matinv(invQf, n) && !matinv(invQb, n))
|
||
{
|
||
for (i = 0; i < n * n; i++)
|
||
Qs[i] = invQf[i] + invQb[i];
|
||
if (!(info = matinv(Qs, n)))
|
||
{
|
||
matmul("NN", n, 1, n, 1.0, invQf, xf, 0.0, xx);
|
||
matmul("NN", n, 1, n, 1.0, invQb, xb, 1.0, xx);
|
||
matmul("NN", n, 1, n, 1.0, Qs, xx, 0.0, xs);
|
||
}
|
||
}
|
||
free(invQf);
|
||
free(invQb);
|
||
free(xx);
|
||
return info;
|
||
}
|
||
/* print matrix ----------------------------------------------------------------
|
||
* print matrix to stdout
|
||
* args : double *A I matrix A (n x m)
|
||
* int n,m I number of rows and columns of A
|
||
* int p,q I total columns, columns under decimal point
|
||
* (FILE *fp I output file pointer)
|
||
* return : none
|
||
* notes : matirix stored by column-major order (fortran convention)
|
||
*-----------------------------------------------------------------------------*/
|
||
extern void matfprint(const double A[], int n, int m, int p, int q, FILE *fp)
|
||
{
|
||
int i, j;
|
||
|
||
for (i = 0; i < n; i++)
|
||
{
|
||
for (j = 0; j < m; j++)
|
||
fprintf(fp, " %*.*f", p, q, A[i + j * n]);
|
||
fprintf(fp, "\n");
|
||
}
|
||
}
|
||
extern void matprint(const double A[], int n, int m, int p, int q)
|
||
{
|
||
matfprint(A, n, m, p, q, stdout);
|
||
}
|
||
/* string to number ------------------------------------------------------------
|
||
* convert substring in string to number
|
||
* args : char *s I string ("... nnn.nnn ...")
|
||
* int i,n I substring position and width
|
||
* return : converted number (0.0:error)
|
||
*-----------------------------------------------------------------------------*/
|
||
extern double str2num(const char *s, int i, int n)
|
||
{
|
||
double value;
|
||
char str[256], *p = str;
|
||
|
||
if (i < 0 || (int)strlen(s) < i || (int)sizeof(str) - 1 < n)
|
||
return 0.0;
|
||
for (s += i; *s && --n >= 0; s++)
|
||
*p++ = *s == 'd' || *s == 'D' ? 'E' : *s;
|
||
*p = '\0';
|
||
return sscanf(str, "%lf", &value) == 1 ? value : 0.0;
|
||
}
|
||
/* string to time --------------------------------------------------------------
|
||
* convert substring in string to gtime_t struct
|
||
* args : char *s I string ("... yyyy mm dd hh mm ss ...")
|
||
* int i,n I substring position and width
|
||
* gtime_t *t O gtime_t struct
|
||
* return : status (0:ok,0>:error)
|
||
*-----------------------------------------------------------------------------*/
|
||
extern int str2time(const char *s, int i, int n, gtime_t *t)
|
||
{
|
||
double ep[6];
|
||
char str[256], *p = str;
|
||
|
||
if (i < 0 || (int)strlen(s) < i || (int)sizeof(str) - 1 < i)
|
||
return -1;
|
||
for (s += i; *s && --n >= 0;)
|
||
*p++ = *s++;
|
||
*p = '\0';
|
||
if (sscanf(str, "%lf %lf %lf %lf %lf %lf", ep, ep + 1, ep + 2, ep + 3, ep + 4, ep + 5) < 6)
|
||
return -1;
|
||
if (ep[0] < 100.0)
|
||
ep[0] += ep[0] < 80.0 ? 2000.0 : 1900.0;
|
||
*t = epoch2time(ep);
|
||
return 0;
|
||
}
|
||
/* convert calendar day/time to time -------------------------------------------
|
||
* convert calendar day/time to gtime_t struct
|
||
* args : double *ep I day/time {year,month,day,hour,min,sec}
|
||
* return : gtime_t struct
|
||
* notes : proper in 1970-2037 or 1970-2099 (64bit time_t)
|
||
*-----------------------------------------------------------------------------*/
|
||
extern gtime_t epoch2time(const double *ep)
|
||
{
|
||
const int doy[] = {1, 32, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335};
|
||
gtime_t time = {0};
|
||
int days, sec, year = (int)ep[0], mon = (int)ep[1], day = (int)ep[2];
|
||
|
||
if (year < 1970 || 2099 < year || mon < 1 || 12 < mon)
|
||
return time;
|
||
|
||
/* leap year if year%4==0 in 1901-2099 */
|
||
days = (year - 1970) * 365 + (year - 1969) / 4 + doy[mon - 1] + day - 2 + (year % 4 == 0 && mon >= 3 ? 1 : 0);
|
||
sec = (int)floor(ep[5]);
|
||
time.time = (time_t)days * 86400 + (int)ep[3] * 3600 + (int)ep[4] * 60 + sec;
|
||
time.sec = ep[5] - sec;
|
||
return time;
|
||
}
|
||
/* time to calendar day/time ---------------------------------------------------
|
||
* convert gtime_t struct to calendar day/time
|
||
* args : gtime_t t I gtime_t struct
|
||
* double *ep O day/time {year,month,day,hour,min,sec}
|
||
* return : none
|
||
* notes : proper in 1970-2037 or 1970-2099 (64bit time_t)
|
||
*-----------------------------------------------------------------------------*/
|
||
extern void time2epoch(gtime_t t, double *ep)
|
||
{
|
||
const int mday[] = {/* # of days in a month */
|
||
31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31,
|
||
31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
|
||
int days, sec, mon, day;
|
||
|
||
/* leap year if year%4==0 in 1901-2099 */
|
||
days = (int)(t.time / 86400);
|
||
sec = (int)(t.time - (time_t)days * 86400);
|
||
for (day = days % 1461, mon = 0; mon < 48; mon++)
|
||
{
|
||
if (day >= mday[mon])
|
||
day -= mday[mon];
|
||
else
|
||
break;
|
||
}
|
||
ep[0] = 1970 + days / 1461 * 4 + mon / 12;
|
||
ep[1] = mon % 12 + 1;
|
||
ep[2] = day + 1;
|
||
ep[3] = sec / 3600;
|
||
ep[4] = sec % 3600 / 60;
|
||
ep[5] = sec % 60 + t.sec;
|
||
}
|
||
/* same as above but output limited to n decimals for formatted output */
|
||
extern void time2epoch_n(gtime_t t, double *ep, int n)
|
||
{
|
||
if (n < 0)
|
||
n = 0;
|
||
else if (n > 12)
|
||
n = 12;
|
||
if (1.0 - t.sec < 0.5 / pow(10.0, n))
|
||
{
|
||
t.time++;
|
||
t.sec = 0.0;
|
||
};
|
||
time2epoch(t, ep);
|
||
}
|
||
/* gps time to time ------------------------------------------------------------
|
||
* convert week and tow in gps time to gtime_t struct
|
||
* args : int week I week number in gps time
|
||
* double sec I time of week in gps time (s)
|
||
* return : gtime_t struct
|
||
*-----------------------------------------------------------------------------*/
|
||
extern gtime_t gpst2time(int week, double sec)
|
||
{
|
||
gtime_t t = epoch2time(gpst0);
|
||
|
||
if (sec < -1E9 || 1E9 < sec)
|
||
sec = 0.0;
|
||
t.time += (time_t)86400 * 7 * week + (int)sec;
|
||
t.sec = sec - (int)sec;
|
||
return t;
|
||
}
|
||
/* time to gps time ------------------------------------------------------------
|
||
* convert gtime_t struct to week and tow in gps time
|
||
* args : gtime_t t I gtime_t struct
|
||
* int *week IO week number in gps time (NULL: no output)
|
||
* return : time of week in gps time (s)
|
||
*-----------------------------------------------------------------------------*/
|
||
extern double time2gpst(gtime_t t, int *week)
|
||
{
|
||
gtime_t t0 = epoch2time(gpst0);
|
||
time_t sec = t.time - t0.time;
|
||
int w = (int)(sec / (86400 * 7));
|
||
|
||
if (week)
|
||
*week = w;
|
||
return (double)(sec - (double)w * 86400 * 7) + t.sec;
|
||
}
|
||
/* galileo system time to time -------------------------------------------------
|
||
* convert week and tow in galileo system time (gst) to gtime_t struct
|
||
* args : int week I week number in gst
|
||
* double sec I time of week in gst (s)
|
||
* return : gtime_t struct
|
||
*-----------------------------------------------------------------------------*/
|
||
extern gtime_t gst2time(int week, double sec)
|
||
{
|
||
gtime_t t = epoch2time(gst0);
|
||
|
||
if (sec < -1E9 || 1E9 < sec)
|
||
sec = 0.0;
|
||
t.time += (time_t)86400 * 7 * week + (int)sec;
|
||
t.sec = sec - (int)sec;
|
||
return t;
|
||
}
|
||
/* time to galileo system time -------------------------------------------------
|
||
* convert gtime_t struct to week and tow in galileo system time (gst)
|
||
* args : gtime_t t I gtime_t struct
|
||
* int *week IO week number in gst (NULL: no output)
|
||
* return : time of week in gst (s)
|
||
*-----------------------------------------------------------------------------*/
|
||
extern double time2gst(gtime_t t, int *week)
|
||
{
|
||
gtime_t t0 = epoch2time(gst0);
|
||
time_t sec = t.time - t0.time;
|
||
int w = (int)(sec / (86400 * 7));
|
||
|
||
if (week)
|
||
*week = w;
|
||
return (double)(sec - (double)w * 86400 * 7) + t.sec;
|
||
}
|
||
/* beidou time (bdt) to time ---------------------------------------------------
|
||
* convert week and tow in beidou time (bdt) to gtime_t struct
|
||
* args : int week I week number in bdt
|
||
* double sec I time of week in bdt (s)
|
||
* return : gtime_t struct
|
||
*-----------------------------------------------------------------------------*/
|
||
extern gtime_t bdt2time(int week, double sec)
|
||
{
|
||
gtime_t t = epoch2time(bdt0);
|
||
|
||
if (sec < -1E9 || 1E9 < sec)
|
||
sec = 0.0;
|
||
t.time += (time_t)86400 * 7 * week + (int)sec;
|
||
t.sec = sec - (int)sec;
|
||
return t;
|
||
}
|
||
/* time to beidouo time (bdt) --------------------------------------------------
|
||
* convert gtime_t struct to week and tow in beidou time (bdt)
|
||
* args : gtime_t t I gtime_t struct
|
||
* int *week IO week number in bdt (NULL: no output)
|
||
* return : time of week in bdt (s)
|
||
*-----------------------------------------------------------------------------*/
|
||
extern double time2bdt(gtime_t t, int *week)
|
||
{
|
||
gtime_t t0 = epoch2time(bdt0);
|
||
time_t sec = t.time - t0.time;
|
||
int w = (int)(sec / (86400 * 7));
|
||
|
||
if (week)
|
||
*week = w;
|
||
return (double)(sec - (double)w * 86400 * 7) + t.sec;
|
||
}
|
||
/* add time --------------------------------------------------------------------
|
||
* add time to gtime_t struct
|
||
* args : gtime_t t I gtime_t struct
|
||
* double sec I time to add (s)
|
||
* return : gtime_t struct (t+sec)
|
||
*-----------------------------------------------------------------------------*/
|
||
extern gtime_t timeadd(gtime_t t, double sec)
|
||
{
|
||
double tt;
|
||
|
||
t.sec += sec;
|
||
tt = floor(t.sec);
|
||
t.time += (int)tt;
|
||
t.sec -= tt;
|
||
return t;
|
||
}
|
||
/* time difference -------------------------------------------------------------
|
||
* difference between gtime_t structs
|
||
* args : gtime_t t1,t2 I gtime_t structs
|
||
* return : time difference (t1-t2) (s)
|
||
*-----------------------------------------------------------------------------*/
|
||
extern double timediff(gtime_t t1, gtime_t t2)
|
||
{
|
||
return difftime(t1.time, t2.time) + t1.sec - t2.sec;
|
||
}
|
||
/* get current time in utc -----------------------------------------------------
|
||
* get current time in utc
|
||
* args : none
|
||
* return : current time in utc
|
||
*-----------------------------------------------------------------------------*/
|
||
static double timeoffset_ = 0.0; /* time offset (s) */
|
||
|
||
extern gtime_t timeget(void)
|
||
{
|
||
gtime_t now;
|
||
now.time =time(RT_NULL);
|
||
now.sec = 0;
|
||
return timeadd(now, timeoffset_);
|
||
}
|
||
/* set current time in utc -----------------------------------------------------
|
||
* set current time in utc
|
||
* args : gtime_t I current time in utc
|
||
* return : none
|
||
* notes : just set time offset between cpu time and current time
|
||
* the time offset is reflected to only timeget()
|
||
* not reentrant
|
||
*-----------------------------------------------------------------------------*/
|
||
extern void timeset(gtime_t t)
|
||
{
|
||
timeoffset_ += timediff(t, timeget());
|
||
}
|
||
/* reset current time ----------------------------------------------------------
|
||
* reset current time
|
||
* args : none
|
||
* return : none
|
||
*-----------------------------------------------------------------------------*/
|
||
extern void timereset(void)
|
||
{
|
||
timeoffset_ = 0.0;
|
||
}
|
||
/* read leap seconds table by text -------------------------------------------*/
|
||
static int read_leaps_text(FILE *fp)
|
||
{
|
||
char buff[256], *p;
|
||
int i, n = 0, ep[6], ls;
|
||
|
||
rewind(fp);
|
||
|
||
while (fgets(buff, sizeof(buff), fp) && n < MAXLEAPS)
|
||
{
|
||
if ((p = strchr(buff, '#')))
|
||
*p = '\0';
|
||
if (sscanf(buff, "%d %d %d %d %d %d %d", ep, ep + 1, ep + 2, ep + 3, ep + 4, ep + 5,
|
||
&ls) < 7)
|
||
continue;
|
||
for (i = 0; i < 6; i++)
|
||
leaps[n][i] = ep[i];
|
||
leaps[n++][6] = ls;
|
||
}
|
||
return n;
|
||
}
|
||
/* read leap seconds table by usno -------------------------------------------*/
|
||
static int read_leaps_usno(FILE *fp)
|
||
{
|
||
static const char *months[] = {
|
||
"JAN", "FEB", "MAR", "APR", "MAY", "JUN", "JUL", "AUG", "SEP", "OCT", "NOV", "DEC"};
|
||
double jd, tai_utc;
|
||
char buff[256], month[32] = {'\0'}, ls[MAXLEAPS][7] = {{0}};
|
||
int i, j, y, m, d, n = 0;
|
||
|
||
rewind(fp);
|
||
|
||
while (fgets(buff, sizeof(buff), fp) && n < MAXLEAPS)
|
||
{
|
||
if (sscanf(buff, "%d %s %d =JD %lf TAI-UTC= %lf", &y, month, &d, &jd,
|
||
&tai_utc) < 5)
|
||
continue;
|
||
if (y < 1980)
|
||
continue;
|
||
for (m = 1; m <= 12; m++)
|
||
if (!strcmp(months[m - 1], month))
|
||
break;
|
||
if (m >= 13)
|
||
continue;
|
||
ls[n][0] = y;
|
||
ls[n][1] = m;
|
||
ls[n][2] = d;
|
||
ls[n++][6] = (char)(19.0 - tai_utc);
|
||
}
|
||
for (i = 0; i < n; i++)
|
||
for (j = 0; j < 7; j++)
|
||
{
|
||
leaps[i][j] = ls[n - i - 1][j];
|
||
}
|
||
return n;
|
||
}
|
||
/* read leap seconds table -----------------------------------------------------
|
||
* read leap seconds table
|
||
* args : char *file I leap seconds table file
|
||
* return : status (1:ok,0:error)
|
||
* notes : The leap second table should be as follows or leapsec.dat provided
|
||
* by USNO.
|
||
* (1) The records in the table file cosist of the following fields:
|
||
* year month day hour min sec UTC-GPST(s)
|
||
* (2) The date and time indicate the start UTC time for the UTC-GPST
|
||
* (3) The date and time should be descending order.
|
||
*-----------------------------------------------------------------------------*/
|
||
extern int read_leaps(const char *file)
|
||
{
|
||
FILE *fp;
|
||
int i, n;
|
||
|
||
if (!(fp = fopen(file, "r")))
|
||
return 0;
|
||
|
||
/* read leap seconds table by text or usno */
|
||
if (!(n = read_leaps_text(fp)) && !(n = read_leaps_usno(fp)))
|
||
{
|
||
fclose(fp);
|
||
return 0;
|
||
}
|
||
for (i = 0; i < 7; i++)
|
||
leaps[n][i] = 0.0;
|
||
fclose(fp);
|
||
return 1;
|
||
}
|
||
/* gpstime to utc --------------------------------------------------------------
|
||
* convert gpstime to utc considering leap seconds
|
||
* args : gtime_t t I time expressed in gpstime
|
||
* return : time expressed in utc
|
||
* notes : ignore slight time offset under 100 ns
|
||
*-----------------------------------------------------------------------------*/
|
||
extern gtime_t gpst2utc(gtime_t t)
|
||
{
|
||
gtime_t tu;
|
||
int i;
|
||
|
||
for (i = 0; leaps[i][0] > 0; i++)
|
||
{
|
||
tu = timeadd(t, leaps[i][6]);
|
||
if (timediff(tu, epoch2time(leaps[i])) >= 0.0)
|
||
return tu;
|
||
}
|
||
return t;
|
||
}
|
||
/* utc to gpstime --------------------------------------------------------------
|
||
* convert utc to gpstime considering leap seconds
|
||
* args : gtime_t t I time expressed in utc
|
||
* return : time expressed in gpstime
|
||
* notes : ignore slight time offset under 100 ns
|
||
*-----------------------------------------------------------------------------*/
|
||
extern gtime_t utc2gpst(gtime_t t)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; leaps[i][0] > 0; i++)
|
||
{
|
||
if (timediff(t, epoch2time(leaps[i])) >= 0.0)
|
||
return timeadd(t, -leaps[i][6]);
|
||
}
|
||
return t;
|
||
}
|
||
/* gpstime to bdt --------------------------------------------------------------
|
||
* convert gpstime to bdt (beidou navigation satellite system time)
|
||
* args : gtime_t t I time expressed in gpstime
|
||
* return : time expressed in bdt
|
||
* notes : ref [8] 3.3, 2006/1/1 00:00 BDT = 2006/1/1 00:00 UTC
|
||
* no leap seconds in BDT
|
||
* ignore slight time offset under 100 ns
|
||
*-----------------------------------------------------------------------------*/
|
||
extern gtime_t gpst2bdt(gtime_t t)
|
||
{
|
||
return timeadd(t, -14.0);
|
||
}
|
||
/* bdt to gpstime --------------------------------------------------------------
|
||
* convert bdt (beidou navigation satellite system time) to gpstime
|
||
* args : gtime_t t I time expressed in bdt
|
||
* return : time expressed in gpstime
|
||
* notes : see gpst2bdt()
|
||
*-----------------------------------------------------------------------------*/
|
||
extern gtime_t bdt2gpst(gtime_t t)
|
||
{
|
||
return timeadd(t, 14.0);
|
||
}
|
||
/* time to day and sec -------------------------------------------------------*/
|
||
static double time2sec(gtime_t time, gtime_t *day)
|
||
{
|
||
double ep[6], sec;
|
||
time2epoch(time, ep);
|
||
sec = ep[3] * 3600.0 + ep[4] * 60.0 + ep[5];
|
||
ep[3] = ep[4] = ep[5] = 0.0;
|
||
*day = epoch2time(ep);
|
||
return sec;
|
||
}
|
||
/* utc to gmst -----------------------------------------------------------------
|
||
* convert utc to gmst (Greenwich mean sidereal time)
|
||
* args : gtime_t t I time expressed in utc
|
||
* double ut1_utc I UT1-UTC (s)
|
||
* return : gmst (rad)
|
||
*-----------------------------------------------------------------------------*/
|
||
extern double utc2gmst(gtime_t t, double ut1_utc)
|
||
{
|
||
const double ep2000[] = {2000, 1, 1, 12, 0, 0};
|
||
gtime_t tut, tut0;
|
||
double ut, t1, t2, t3, gmst0, gmst;
|
||
|
||
tut = timeadd(t, ut1_utc);
|
||
ut = time2sec(tut, &tut0);
|
||
t1 = timediff(tut0, epoch2time(ep2000)) / 86400.0 / 36525.0;
|
||
t2 = t1 * t1;
|
||
t3 = t2 * t1;
|
||
gmst0 = 24110.54841 + 8640184.812866 * t1 + 0.093104 * t2 - 6.2E-6 * t3;
|
||
gmst = gmst0 + 1.002737909350795 * ut;
|
||
|
||
return fmod(gmst, 86400.0) * PI / 43200.0; /* 0 <= gmst <= 2*PI */
|
||
}
|
||
/* time to string --------------------------------------------------------------
|
||
* convert gtime_t struct to string
|
||
* args : gtime_t t I gtime_t struct
|
||
* char *s O string ("yyyy/mm/dd hh:mm:ss.ssss")
|
||
* int n I number of decimals
|
||
* return : none
|
||
*-----------------------------------------------------------------------------*/
|
||
extern void time2str(gtime_t t, char *s, int n)
|
||
{
|
||
double ep[6];
|
||
|
||
if (n < 0)
|
||
n = 0;
|
||
else if (n > 12)
|
||
n = 12;
|
||
if (1.0 - t.sec < 0.5 / pow(10.0, n))
|
||
{
|
||
t.time++;
|
||
t.sec = 0.0;
|
||
};
|
||
time2epoch(t, ep);
|
||
sprintf(s, "%04.0f/%02.0f/%02.0f %02.0f:%02.0f:%0*.*f", ep[0], ep[1], ep[2],
|
||
ep[3], ep[4], n <= 0 ? 2 : n + 3, n <= 0 ? 0 : n, ep[5]);
|
||
}
|
||
/* get time string -------------------------------------------------------------
|
||
* get time string
|
||
* args : gtime_t t I gtime_t struct
|
||
* int n I number of decimals
|
||
* return : time string
|
||
* notes : not reentrant, do not use multiple in a function
|
||
*-----------------------------------------------------------------------------*/
|
||
extern char *time_str(gtime_t t, int n)
|
||
{
|
||
static char buff[64];
|
||
time2str(t, buff, n);
|
||
return buff;
|
||
}
|
||
/* time to day of year ---------------------------------------------------------
|
||
* convert time to day of year
|
||
* args : gtime_t t I gtime_t struct
|
||
* return : day of year (days)
|
||
*-----------------------------------------------------------------------------*/
|
||
extern double time2doy(gtime_t t)
|
||
{
|
||
double ep[6];
|
||
|
||
time2epoch(t, ep);
|
||
ep[1] = ep[2] = 1.0;
|
||
ep[3] = ep[4] = ep[5] = 0.0;
|
||
return timediff(t, epoch2time(ep)) / 86400.0 + 1.0;
|
||
}
|
||
/* adjust gps week number ------------------------------------------------------
|
||
* adjust gps week number using cpu time
|
||
* args : int week I not-adjusted gps week number (0-1023)
|
||
* return : adjusted gps week number
|
||
*-----------------------------------------------------------------------------*/
|
||
extern int adjgpsweek(int week)
|
||
{
|
||
int w;
|
||
(void)time2gpst(utc2gpst(timeget()), &w);
|
||
if (w < 1560)
|
||
w = 1560; /* use 2009/12/1 if time is earlier than 2009/12/1 */
|
||
return week + (w - week + 1) / 1024 * 1024;
|
||
}
|
||
/* get tick time ---------------------------------------------------------------
|
||
* get current tick in ms
|
||
* args : none
|
||
* return : current tick in ms
|
||
*-----------------------------------------------------------------------------*/
|
||
extern uint32_t tickget(void)
|
||
{
|
||
return rt_tick_get();
|
||
|
||
}
|
||
|
||
/* sleep ms --------------------------------------------------------------------
|
||
* sleep ms
|
||
* args : int ms I miliseconds to sleep (<0:no sleep)
|
||
* return : none
|
||
*-----------------------------------------------------------------------------*/
|
||
extern void sleepms(int ms)
|
||
{
|
||
rt_thread_sleep((rt_tick_t)ms);
|
||
}
|
||
/* convert degree to deg-min-sec -----------------------------------------------
|
||
* convert degree to degree-minute-second
|
||
* args : double deg I degree
|
||
* double *dms O degree-minute-second {deg,min,sec}
|
||
* int ndec I number of decimals of second
|
||
* return : none
|
||
*-----------------------------------------------------------------------------*/
|
||
extern void deg2dms(double deg, double *dms, int ndec)
|
||
{
|
||
double sign = deg < 0.0 ? -1.0 : 1.0, a = fabs(deg);
|
||
double unit = pow(0.1, ndec);
|
||
dms[0] = floor(a);
|
||
a = (a - dms[0]) * 60.0;
|
||
dms[1] = floor(a);
|
||
a = (a - dms[1]) * 60.0;
|
||
dms[2] = floor(a / unit + 0.5) * unit;
|
||
if (dms[2] >= 60.0)
|
||
{
|
||
dms[2] = 0.0;
|
||
dms[1] += 1.0;
|
||
if (dms[1] >= 60.0)
|
||
{
|
||
dms[1] = 0.0;
|
||
dms[0] += 1.0;
|
||
}
|
||
}
|
||
dms[0] *= sign;
|
||
}
|
||
/* convert deg-min-sec to degree -----------------------------------------------
|
||
* convert degree-minute-second to degree
|
||
* args : double *dms I degree-minute-second {deg,min,sec}
|
||
* return : degree
|
||
*-----------------------------------------------------------------------------*/
|
||
extern double dms2deg(const double *dms)
|
||
{
|
||
double sign = dms[0] < 0.0 ? -1.0 : 1.0;
|
||
return sign * (fabs(dms[0]) + dms[1] / 60.0 + dms[2] / 3600.0);
|
||
}
|
||
/* transform ecef to geodetic postion ------------------------------------------
|
||
* transform ecef position to geodetic position
|
||
* args : double *r I ecef position {x,y,z} (m)
|
||
* double *pos O geodetic position {lat,lon,h} (rad,m)
|
||
* return : none
|
||
* notes : WGS84, ellipsoidal height
|
||
*-----------------------------------------------------------------------------*/
|
||
extern void ecef2pos(const double *r, double *pos)
|
||
{
|
||
double e2 = FE_WGS84 * (2.0 - FE_WGS84), r2 = dot(r, r, 2), z, zk, v = RE_WGS84, sinp;
|
||
|
||
for (z = r[2], zk = 0.0; fabs(z - zk) >= 1E-4;)
|
||
{
|
||
zk = z;
|
||
sinp = z / sqrt(r2 + z * z);
|
||
v = RE_WGS84 / sqrt(1.0 - e2 * sinp * sinp);
|
||
z = r[2] + v * e2 * sinp;
|
||
}
|
||
pos[0] = r2 > 1E-12 ? atan(z / sqrt(r2)) : (r[2] > 0.0 ? PI / 2.0 : -PI / 2.0);
|
||
pos[1] = r2 > 1E-12 ? atan2(r[1], r[0]) : 0.0;
|
||
pos[2] = sqrt(r2 + z * z) - v;
|
||
}
|
||
/* transform geodetic to ecef position -----------------------------------------
|
||
* transform geodetic position to ecef position
|
||
* args : double *pos I geodetic position {lat,lon,h} (rad,m)
|
||
* double *r O ecef position {x,y,z} (m)
|
||
* return : none
|
||
* notes : WGS84, ellipsoidal height
|
||
*-----------------------------------------------------------------------------*/
|
||
extern void pos2ecef(const double *pos, double *r)
|
||
{
|
||
double sinp = sin(pos[0]), cosp = cos(pos[0]), sinl = sin(pos[1]), cosl = cos(pos[1]);
|
||
double e2 = FE_WGS84 * (2.0 - FE_WGS84), v = RE_WGS84 / sqrt(1.0 - e2 * sinp * sinp);
|
||
|
||
r[0] = (v + pos[2]) * cosp * cosl;
|
||
r[1] = (v + pos[2]) * cosp * sinl;
|
||
r[2] = (v * (1.0 - e2) + pos[2]) * sinp;
|
||
}
|
||
/* ecef to local coordinate transfromation matrix ------------------------------
|
||
* compute ecef to local coordinate transfromation matrix
|
||
* args : double *pos I geodetic position {lat,lon} (rad)
|
||
* double *E O ecef to local coord transformation matrix (3x3)
|
||
* return : none
|
||
* notes : matirix stored by column-major order (fortran convention)
|
||
*-----------------------------------------------------------------------------*/
|
||
extern void xyz2enu(const double *pos, double *E)
|
||
{
|
||
double sinp = sin(pos[0]), cosp = cos(pos[0]), sinl = sin(pos[1]), cosl = cos(pos[1]);
|
||
|
||
E[0] = -sinl;
|
||
E[1] = -sinp * cosl;
|
||
E[2] = cosp * cosl;
|
||
E[3] = cosl;
|
||
E[4] = -sinp * sinl;
|
||
E[5] = cosp * sinl;
|
||
E[6] = 0.0;
|
||
E[7] = cosp;
|
||
E[8] = sinp;
|
||
}
|
||
/* transform ecef vector to local tangental coordinate -------------------------
|
||
* transform ecef vector to local tangental coordinate
|
||
* args : double *pos I geodetic position {lat,lon} (rad)
|
||
* double *r I vector in ecef coordinate {x,y,z}
|
||
* double *e O vector in local tangental coordinate {e,n,u}
|
||
* return : none
|
||
*-----------------------------------------------------------------------------*/
|
||
extern void ecef2enu(const double *pos, const double *r, double *e)
|
||
{
|
||
double E[9];
|
||
|
||
xyz2enu(pos, E);
|
||
matmul("NN", 3, 1, 3, 1.0, E, r, 0.0, e);
|
||
}
|
||
/* transform local vector to ecef coordinate -----------------------------------
|
||
* transform local tangental coordinate vector to ecef
|
||
* args : double *pos I geodetic position {lat,lon} (rad)
|
||
* double *e I vector in local tangental coordinate {e,n,u}
|
||
* double *r O vector in ecef coordinate {x,y,z}
|
||
* return : none
|
||
*-----------------------------------------------------------------------------*/
|
||
extern void enu2ecef(const double *pos, const double *e, double *r)
|
||
{
|
||
double E[9];
|
||
|
||
xyz2enu(pos, E);
|
||
matmul("TN", 3, 1, 3, 1.0, E, e, 0.0, r);
|
||
}
|
||
/* transform covariance to local tangental coordinate --------------------------
|
||
* transform ecef covariance to local tangental coordinate
|
||
* args : double *pos I geodetic position {lat,lon} (rad)
|
||
* double *P I covariance in ecef coordinate
|
||
* double *Q O covariance in local tangental coordinate
|
||
* return : none
|
||
*-----------------------------------------------------------------------------*/
|
||
extern void covenu(const double *pos, const double *P, double *Q)
|
||
{
|
||
double E[9], EP[9];
|
||
|
||
xyz2enu(pos, E);
|
||
matmul("NN", 3, 3, 3, 1.0, E, P, 0.0, EP);
|
||
matmul("NT", 3, 3, 3, 1.0, EP, E, 0.0, Q);
|
||
}
|
||
/* transform local enu coordinate covariance to xyz-ecef -----------------------
|
||
* transform local enu covariance to xyz-ecef coordinate
|
||
* args : double *pos I geodetic position {lat,lon} (rad)
|
||
* double *Q I covariance in local enu coordinate
|
||
* double *P O covariance in xyz-ecef coordinate
|
||
* return : none
|
||
*-----------------------------------------------------------------------------*/
|
||
extern void covecef(const double *pos, const double *Q, double *P)
|
||
{
|
||
double E[9], EQ[9];
|
||
|
||
xyz2enu(pos, E);
|
||
matmul("TN", 3, 3, 3, 1.0, E, Q, 0.0, EQ);
|
||
matmul("NN", 3, 3, 3, 1.0, EQ, E, 0.0, P);
|
||
}
|
||
/* coordinate rotation matrix ------------------------------------------------*/
|
||
#define Rx(t, X) \
|
||
do \
|
||
{ \
|
||
(X)[0] = 1.0; \
|
||
(X)[1] = (X)[2] = (X)[3] = (X)[6] = 0.0; \
|
||
(X)[4] = (X)[8] = cos(t); \
|
||
(X)[7] = sin(t); \
|
||
(X)[5] = -(X)[7]; \
|
||
} while (0)
|
||
|
||
#define Ry(t, X) \
|
||
do \
|
||
{ \
|
||
(X)[4] = 1.0; \
|
||
(X)[1] = (X)[3] = (X)[5] = (X)[7] = 0.0; \
|
||
(X)[0] = (X)[8] = cos(t); \
|
||
(X)[2] = sin(t); \
|
||
(X)[6] = -(X)[2]; \
|
||
} while (0)
|
||
|
||
#define Rz(t, X) \
|
||
do \
|
||
{ \
|
||
(X)[8] = 1.0; \
|
||
(X)[2] = (X)[5] = (X)[6] = (X)[7] = 0.0; \
|
||
(X)[0] = (X)[4] = cos(t); \
|
||
(X)[3] = sin(t); \
|
||
(X)[1] = -(X)[3]; \
|
||
} while (0)
|
||
|
||
/* astronomical arguments: f={l,l',F,D,OMG} (rad) ----------------------------*/
|
||
static void ast_args(double t, double *f)
|
||
{
|
||
static const double fc[][5] = {/* coefficients for iau 1980 nutation */
|
||
{134.96340251, 1717915923.2178, 31.8792, 0.051635, -0.00024470},
|
||
{357.52910918, 129596581.0481, -0.5532, 0.000136, -0.00001149},
|
||
{93.27209062, 1739527262.8478, -12.7512, -0.001037, 0.00000417},
|
||
{297.85019547, 1602961601.2090, -6.3706, 0.006593, -0.00003169},
|
||
{125.04455501, -6962890.2665, 7.4722, 0.007702, -0.00005939}};
|
||
double tt[4];
|
||
int i, j;
|
||
|
||
for (tt[0] = t, i = 1; i < 4; i++)
|
||
tt[i] = tt[i - 1] * t;
|
||
for (i = 0; i < 5; i++)
|
||
{
|
||
f[i] = fc[i][0] * 3600.0;
|
||
for (j = 0; j < 4; j++)
|
||
f[i] += fc[i][j + 1] * tt[j];
|
||
f[i] = fmod(f[i] * AS2R, 2.0 * PI);
|
||
}
|
||
}
|
||
/* iau 1980 nutation ---------------------------------------------------------*/
|
||
static void nut_iau1980(double t, const double *f, double *dpsi, double *deps)
|
||
{
|
||
static const double nut[106][10] = {
|
||
{0, 0, 0, 0, 1, -6798.4, -171996, -174.2, 92025, 8.9},
|
||
{0, 0, 2, -2, 2, 182.6, -13187, -1.6, 5736, -3.1},
|
||
{0, 0, 2, 0, 2, 13.7, -2274, -0.2, 977, -0.5},
|
||
{0, 0, 0, 0, 2, -3399.2, 2062, 0.2, -895, 0.5},
|
||
{0, -1, 0, 0, 0, -365.3, -1426, 3.4, 54, -0.1},
|
||
{1, 0, 0, 0, 0, 27.6, 712, 0.1, -7, 0.0},
|
||
{0, 1, 2, -2, 2, 121.7, -517, 1.2, 224, -0.6},
|
||
{0, 0, 2, 0, 1, 13.6, -386, -0.4, 200, 0.0},
|
||
{1, 0, 2, 0, 2, 9.1, -301, 0.0, 129, -0.1},
|
||
{0, -1, 2, -2, 2, 365.2, 217, -0.5, -95, 0.3},
|
||
{-1, 0, 0, 2, 0, 31.8, 158, 0.0, -1, 0.0},
|
||
{0, 0, 2, -2, 1, 177.8, 129, 0.1, -70, 0.0},
|
||
{-1, 0, 2, 0, 2, 27.1, 123, 0.0, -53, 0.0},
|
||
{1, 0, 0, 0, 1, 27.7, 63, 0.1, -33, 0.0},
|
||
{0, 0, 0, 2, 0, 14.8, 63, 0.0, -2, 0.0},
|
||
{-1, 0, 2, 2, 2, 9.6, -59, 0.0, 26, 0.0},
|
||
{-1, 0, 0, 0, 1, -27.4, -58, -0.1, 32, 0.0},
|
||
{1, 0, 2, 0, 1, 9.1, -51, 0.0, 27, 0.0},
|
||
{-2, 0, 0, 2, 0, -205.9, -48, 0.0, 1, 0.0},
|
||
{-2, 0, 2, 0, 1, 1305.5, 46, 0.0, -24, 0.0},
|
||
{0, 0, 2, 2, 2, 7.1, -38, 0.0, 16, 0.0},
|
||
{2, 0, 2, 0, 2, 6.9, -31, 0.0, 13, 0.0},
|
||
{2, 0, 0, 0, 0, 13.8, 29, 0.0, -1, 0.0},
|
||
{1, 0, 2, -2, 2, 23.9, 29, 0.0, -12, 0.0},
|
||
{0, 0, 2, 0, 0, 13.6, 26, 0.0, -1, 0.0},
|
||
{0, 0, 2, -2, 0, 173.3, -22, 0.0, 0, 0.0},
|
||
{-1, 0, 2, 0, 1, 27.0, 21, 0.0, -10, 0.0},
|
||
{0, 2, 0, 0, 0, 182.6, 17, -0.1, 0, 0.0},
|
||
{0, 2, 2, -2, 2, 91.3, -16, 0.1, 7, 0.0},
|
||
{-1, 0, 0, 2, 1, 32.0, 16, 0.0, -8, 0.0},
|
||
{0, 1, 0, 0, 1, 386.0, -15, 0.0, 9, 0.0},
|
||
{1, 0, 0, -2, 1, -31.7, -13, 0.0, 7, 0.0},
|
||
{0, -1, 0, 0, 1, -346.6, -12, 0.0, 6, 0.0},
|
||
{2, 0, -2, 0, 0, -1095.2, 11, 0.0, 0, 0.0},
|
||
{-1, 0, 2, 2, 1, 9.5, -10, 0.0, 5, 0.0},
|
||
{1, 0, 2, 2, 2, 5.6, -8, 0.0, 3, 0.0},
|
||
{0, -1, 2, 0, 2, 14.2, -7, 0.0, 3, 0.0},
|
||
{0, 0, 2, 2, 1, 7.1, -7, 0.0, 3, 0.0},
|
||
{1, 1, 0, -2, 0, -34.8, -7, 0.0, 0, 0.0},
|
||
{0, 1, 2, 0, 2, 13.2, 7, 0.0, -3, 0.0},
|
||
{-2, 0, 0, 2, 1, -199.8, -6, 0.0, 3, 0.0},
|
||
{0, 0, 0, 2, 1, 14.8, -6, 0.0, 3, 0.0},
|
||
{2, 0, 2, -2, 2, 12.8, 6, 0.0, -3, 0.0},
|
||
{1, 0, 0, 2, 0, 9.6, 6, 0.0, 0, 0.0},
|
||
{1, 0, 2, -2, 1, 23.9, 6, 0.0, -3, 0.0},
|
||
{0, 0, 0, -2, 1, -14.7, -5, 0.0, 3, 0.0},
|
||
{0, -1, 2, -2, 1, 346.6, -5, 0.0, 3, 0.0},
|
||
{2, 0, 2, 0, 1, 6.9, -5, 0.0, 3, 0.0},
|
||
{1, -1, 0, 0, 0, 29.8, 5, 0.0, 0, 0.0},
|
||
{1, 0, 0, -1, 0, 411.8, -4, 0.0, 0, 0.0},
|
||
{0, 0, 0, 1, 0, 29.5, -4, 0.0, 0, 0.0},
|
||
{0, 1, 0, -2, 0, -15.4, -4, 0.0, 0, 0.0},
|
||
{1, 0, -2, 0, 0, -26.9, 4, 0.0, 0, 0.0},
|
||
{2, 0, 0, -2, 1, 212.3, 4, 0.0, -2, 0.0},
|
||
{0, 1, 2, -2, 1, 119.6, 4, 0.0, -2, 0.0},
|
||
{1, 1, 0, 0, 0, 25.6, -3, 0.0, 0, 0.0},
|
||
{1, -1, 0, -1, 0, -3232.9, -3, 0.0, 0, 0.0},
|
||
{-1, -1, 2, 2, 2, 9.8, -3, 0.0, 1, 0.0},
|
||
{0, -1, 2, 2, 2, 7.2, -3, 0.0, 1, 0.0},
|
||
{1, -1, 2, 0, 2, 9.4, -3, 0.0, 1, 0.0},
|
||
{3, 0, 2, 0, 2, 5.5, -3, 0.0, 1, 0.0},
|
||
{-2, 0, 2, 0, 2, 1615.7, -3, 0.0, 1, 0.0},
|
||
{1, 0, 2, 0, 0, 9.1, 3, 0.0, 0, 0.0},
|
||
{-1, 0, 2, 4, 2, 5.8, -2, 0.0, 1, 0.0},
|
||
{1, 0, 0, 0, 2, 27.8, -2, 0.0, 1, 0.0},
|
||
{-1, 0, 2, -2, 1, -32.6, -2, 0.0, 1, 0.0},
|
||
{0, -2, 2, -2, 1, 6786.3, -2, 0.0, 1, 0.0},
|
||
{-2, 0, 0, 0, 1, -13.7, -2, 0.0, 1, 0.0},
|
||
{2, 0, 0, 0, 1, 13.8, 2, 0.0, -1, 0.0},
|
||
{3, 0, 0, 0, 0, 9.2, 2, 0.0, 0, 0.0},
|
||
{1, 1, 2, 0, 2, 8.9, 2, 0.0, -1, 0.0},
|
||
{0, 0, 2, 1, 2, 9.3, 2, 0.0, -1, 0.0},
|
||
{1, 0, 0, 2, 1, 9.6, -1, 0.0, 0, 0.0},
|
||
{1, 0, 2, 2, 1, 5.6, -1, 0.0, 1, 0.0},
|
||
{1, 1, 0, -2, 1, -34.7, -1, 0.0, 0, 0.0},
|
||
{0, 1, 0, 2, 0, 14.2, -1, 0.0, 0, 0.0},
|
||
{0, 1, 2, -2, 0, 117.5, -1, 0.0, 0, 0.0},
|
||
{0, 1, -2, 2, 0, -329.8, -1, 0.0, 0, 0.0},
|
||
{1, 0, -2, 2, 0, 23.8, -1, 0.0, 0, 0.0},
|
||
{1, 0, -2, -2, 0, -9.5, -1, 0.0, 0, 0.0},
|
||
{1, 0, 2, -2, 0, 32.8, -1, 0.0, 0, 0.0},
|
||
{1, 0, 0, -4, 0, -10.1, -1, 0.0, 0, 0.0},
|
||
{2, 0, 0, -4, 0, -15.9, -1, 0.0, 0, 0.0},
|
||
{0, 0, 2, 4, 2, 4.8, -1, 0.0, 0, 0.0},
|
||
{0, 0, 2, -1, 2, 25.4, -1, 0.0, 0, 0.0},
|
||
{-2, 0, 2, 4, 2, 7.3, -1, 0.0, 1, 0.0},
|
||
{2, 0, 2, 2, 2, 4.7, -1, 0.0, 0, 0.0},
|
||
{0, -1, 2, 0, 1, 14.2, -1, 0.0, 0, 0.0},
|
||
{0, 0, -2, 0, 1, -13.6, -1, 0.0, 0, 0.0},
|
||
{0, 0, 4, -2, 2, 12.7, 1, 0.0, 0, 0.0},
|
||
{0, 1, 0, 0, 2, 409.2, 1, 0.0, 0, 0.0},
|
||
{1, 1, 2, -2, 2, 22.5, 1, 0.0, -1, 0.0},
|
||
{3, 0, 2, -2, 2, 8.7, 1, 0.0, 0, 0.0},
|
||
{-2, 0, 2, 2, 2, 14.6, 1, 0.0, -1, 0.0},
|
||
{-1, 0, 0, 0, 2, -27.3, 1, 0.0, -1, 0.0},
|
||
{0, 0, -2, 2, 1, -169.0, 1, 0.0, 0, 0.0},
|
||
{0, 1, 2, 0, 1, 13.1, 1, 0.0, 0, 0.0},
|
||
{-1, 0, 4, 0, 2, 9.1, 1, 0.0, 0, 0.0},
|
||
{2, 1, 0, -2, 0, 131.7, 1, 0.0, 0, 0.0},
|
||
{2, 0, 0, 2, 0, 7.1, 1, 0.0, 0, 0.0},
|
||
{2, 0, 2, -2, 1, 12.8, 1, 0.0, -1, 0.0},
|
||
{2, 0, -2, 0, 1, -943.2, 1, 0.0, 0, 0.0},
|
||
{1, -1, 0, -2, 0, -29.3, 1, 0.0, 0, 0.0},
|
||
{-1, 0, 0, 1, 1, -388.3, 1, 0.0, 0, 0.0},
|
||
{-1, -1, 0, 2, 1, 35.0, 1, 0.0, 0, 0.0},
|
||
{0, 1, 0, 1, 0, 27.3, 1, 0.0, 0, 0.0}};
|
||
double ang;
|
||
int i, j;
|
||
|
||
*dpsi = *deps = 0.0;
|
||
|
||
for (i = 0; i < 106; i++)
|
||
{
|
||
ang = 0.0;
|
||
for (j = 0; j < 5; j++)
|
||
ang += nut[i][j] * f[j];
|
||
*dpsi += (nut[i][6] + nut[i][7] * t) * sin(ang);
|
||
*deps += (nut[i][8] + nut[i][9] * t) * cos(ang);
|
||
}
|
||
*dpsi *= 1E-4 * AS2R; /* 0.1 mas -> rad */
|
||
*deps *= 1E-4 * AS2R;
|
||
}
|
||
/* eci to ecef transformation matrix -------------------------------------------
|
||
* compute eci to ecef transformation matrix
|
||
* args : gtime_t tutc I time in utc
|
||
* double *erpv I erp values {xp,yp,ut1_utc,lod} (rad,rad,s,s/d)
|
||
* double *U O eci to ecef transformation matrix (3 x 3)
|
||
* double *gmst IO greenwich mean sidereal time (rad)
|
||
* (NULL: no output)
|
||
* return : none
|
||
* note : see ref [3] chap 5
|
||
* not thread-safe
|
||
*-----------------------------------------------------------------------------*/
|
||
extern void eci2ecef(gtime_t tutc, const double *erpv, double *U, double *gmst)
|
||
{
|
||
const double ep2000[] = {2000, 1, 1, 12, 0, 0};
|
||
static gtime_t tutc_;
|
||
static double U_[9], gmst_;
|
||
gtime_t tgps;
|
||
double eps, ze, th, z, t, t2, t3, dpsi, deps, gast, f[5];
|
||
double R1[9], R2[9], R3[9], R[9], W[9], N[9], P[9], NP[9];
|
||
int i;
|
||
|
||
trace(4, "eci2ecef: tutc=%s\n", time_str(tutc, 3));
|
||
|
||
if (fabs(timediff(tutc, tutc_)) < 0.01)
|
||
{ /* read cache */
|
||
for (i = 0; i < 9; i++)
|
||
U[i] = U_[i];
|
||
if (gmst)
|
||
*gmst = gmst_;
|
||
return;
|
||
}
|
||
tutc_ = tutc;
|
||
|
||
/* terrestrial time */
|
||
tgps = utc2gpst(tutc_);
|
||
t = (timediff(tgps, epoch2time(ep2000)) + 19.0 + 32.184) / 86400.0 / 36525.0;
|
||
t2 = t * t;
|
||
t3 = t2 * t;
|
||
|
||
/* astronomical arguments */
|
||
ast_args(t, f);
|
||
|
||
/* iau 1976 precession */
|
||
ze = (2306.2181 * t + 0.30188 * t2 + 0.017998 * t3) * AS2R;
|
||
th = (2004.3109 * t - 0.42665 * t2 - 0.041833 * t3) * AS2R;
|
||
z = (2306.2181 * t + 1.09468 * t2 + 0.018203 * t3) * AS2R;
|
||
eps = (84381.448 - 46.8150 * t - 0.00059 * t2 + 0.001813 * t3) * AS2R;
|
||
Rz(-z, R1);
|
||
Ry(th, R2);
|
||
Rz(-ze, R3);
|
||
matmul("NN", 3, 3, 3, 1.0, R1, R2, 0.0, R);
|
||
matmul("NN", 3, 3, 3, 1.0, R, R3, 0.0, P); /* P=Rz(-z)*Ry(th)*Rz(-ze) */
|
||
|
||
/* iau 1980 nutation */
|
||
nut_iau1980(t, f, &dpsi, &deps);
|
||
Rx(-eps - deps, R1);
|
||
Rz(-dpsi, R2);
|
||
Rx(eps, R3);
|
||
matmul("NN", 3, 3, 3, 1.0, R1, R2, 0.0, R);
|
||
matmul("NN", 3, 3, 3, 1.0, R, R3, 0.0, N); /* N=Rx(-eps)*Rz(-dspi)*Rx(eps) */
|
||
|
||
/* greenwich aparent sidereal time (rad) */
|
||
gmst_ = utc2gmst(tutc_, erpv[2]);
|
||
gast = gmst_ + dpsi * cos(eps);
|
||
gast += (0.00264 * sin(f[4]) + 0.000063 * sin(2.0 * f[4])) * AS2R;
|
||
|
||
/* eci to ecef transformation matrix */
|
||
Ry(-erpv[0], R1);
|
||
Rx(-erpv[1], R2);
|
||
Rz(gast, R3);
|
||
matmul("NN", 3, 3, 3, 1.0, R1, R2, 0.0, W);
|
||
matmul("NN", 3, 3, 3, 1.0, W, R3, 0.0, R); /* W=Ry(-xp)*Rx(-yp) */
|
||
matmul("NN", 3, 3, 3, 1.0, N, P, 0.0, NP);
|
||
matmul("NN", 3, 3, 3, 1.0, R, NP, 0.0, U_); /* U=W*Rz(gast)*N*P */
|
||
|
||
for (i = 0; i < 9; i++)
|
||
U[i] = U_[i];
|
||
if (gmst)
|
||
*gmst = gmst_;
|
||
|
||
trace(5, "gmst=%.12f gast=%.12f\n", gmst_, gast);
|
||
trace(5, "P=\n");
|
||
tracemat(5, P, 3, 3, 15, 12);
|
||
trace(5, "N=\n");
|
||
tracemat(5, N, 3, 3, 15, 12);
|
||
trace(5, "W=\n");
|
||
tracemat(5, W, 3, 3, 15, 12);
|
||
trace(5, "U=\n");
|
||
tracemat(5, U, 3, 3, 15, 12);
|
||
}
|
||
/* decode antenna parameter field --------------------------------------------*/
|
||
static int decodef(char *p, int n, double *v)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < n; i++)
|
||
v[i] = 0.0;
|
||
for (i = 0, p = strtok(p, " "); p && i < n; p = strtok(NULL, " "))
|
||
{
|
||
v[i++] = atof(p) * 1E-3;
|
||
}
|
||
return i;
|
||
}
|
||
/* add antenna parameter -----------------------------------------------------*/
|
||
// static void addpcv(const pcv_t *pcv, pcvs_t *pcvs)
|
||
//{
|
||
// pcv_t *pcvs_pcv;
|
||
//
|
||
// if (pcvs->nmax<=pcvs->n) {
|
||
// pcvs->nmax+=256;
|
||
// if (!(pcvs_pcv=(pcv_t *)realloc(pcvs->pcv,sizeof(pcv_t)*pcvs->nmax))) {
|
||
// trace(1,"addpcv: memory allocation error\n");
|
||
// free(pcvs->pcv); pcvs->pcv=NULL; pcvs->n=pcvs->nmax=0;
|
||
// return;
|
||
// }
|
||
// pcvs->pcv=pcvs_pcv;
|
||
// }
|
||
// pcvs->pcv[pcvs->n++]=*pcv;
|
||
// }
|
||
/* read ngs antenna parameter file -------------------------------------------*/
|
||
// static int readngspcv(const char *file, pcvs_t *pcvs)
|
||
//{
|
||
// FILE *fp;
|
||
// static const pcv_t pcv0={0};
|
||
// pcv_t pcv;
|
||
// double neu[3];
|
||
// int n=0;
|
||
// char buff[256];
|
||
//
|
||
// if (!(fp=fopen(file,"r"))) {
|
||
// trace(2,"ngs pcv file open error: %s\n",file);
|
||
// return 0;
|
||
// }
|
||
// while (fgets(buff,sizeof(buff),fp)) {
|
||
//
|
||
// if (strlen(buff)>=62&&buff[61]=='|') continue;
|
||
//
|
||
// if (buff[0]!=' ') n=0; /* start line */
|
||
// if (++n==1) {
|
||
// pcv=pcv0;
|
||
// strncpy(pcv.type,buff,61); pcv.type[61]='\0';
|
||
// }
|
||
// else if (n==2) {
|
||
// if (decodef(buff,3,neu)<3) continue;
|
||
// pcv.off[0][0]=neu[1];
|
||
// pcv.off[0][1]=neu[0];
|
||
// pcv.off[0][2]=neu[2];
|
||
// }
|
||
// else if (n==3) decodef(buff,10,pcv.var[0]);
|
||
// else if (n==4) decodef(buff,9,pcv.var[0]+10);
|
||
// else if (n==5) {
|
||
// if (decodef(buff,3,neu)<3) continue;;
|
||
// pcv.off[1][0]=neu[1];
|
||
// pcv.off[1][1]=neu[0];
|
||
// pcv.off[1][2]=neu[2];
|
||
// }
|
||
// else if (n==6) decodef(buff,10,pcv.var[1]);
|
||
// else if (n==7) {
|
||
// decodef(buff,9,pcv.var[1]+10);
|
||
// addpcv(&pcv,pcvs);
|
||
// }
|
||
// }
|
||
// fclose(fp);
|
||
//
|
||
// return 1;
|
||
// }
|
||
/* read antex file ----------------------------------------------------------*/
|
||
// static int readantex(const char *file, pcvs_t *pcvs)
|
||
//{
|
||
// FILE *fp;
|
||
// static const pcv_t pcv0={0};
|
||
// pcv_t pcv;
|
||
// double neu[3];
|
||
// int i,f,freq=0,state=0,freqs[]={1,2,5,0};
|
||
// char buff[256];
|
||
//
|
||
// trace(3,"readantex: file=%s\n",file);
|
||
//
|
||
// if (!(fp=fopen(file,"r"))) {
|
||
// trace(2,"antex pcv file open error: %s\n",file);
|
||
// return 0;
|
||
// }
|
||
// while (fgets(buff,sizeof(buff),fp)) {
|
||
//
|
||
// if (strlen(buff)<60||strstr(buff+60,"COMMENT")) continue;
|
||
//
|
||
// if (strstr(buff+60,"START OF ANTENNA")) {
|
||
// pcv=pcv0;
|
||
// state=1;
|
||
// }
|
||
// if (strstr(buff+60,"END OF ANTENNA")) {
|
||
// addpcv(&pcv,pcvs);
|
||
// state=0;
|
||
// }
|
||
// if (!state) continue;
|
||
//
|
||
// if (strstr(buff+60,"TYPE / SERIAL NO")) {
|
||
// strncpy(pcv.type,buff ,20); pcv.type[20]='\0';
|
||
// strncpy(pcv.code,buff+20,20); pcv.code[20]='\0';
|
||
// if (!strncmp(pcv.code+3," ",8)) {
|
||
// pcv.sat=satid2no(pcv.code);
|
||
// }
|
||
// }
|
||
// else if (strstr(buff+60,"VALID FROM")) {
|
||
// if (!str2time(buff,0,43,&pcv.ts)) continue;
|
||
// }
|
||
// else if (strstr(buff+60,"VALID UNTIL")) {
|
||
// if (!str2time(buff,0,43,&pcv.te)) continue;
|
||
// }
|
||
// else if (strstr(buff+60,"START OF FREQUENCY")) {
|
||
// if (!pcv.sat&&buff[3]!='G') continue; /* only read rec ant for GPS */
|
||
// if (sscanf(buff+4,"%d",&f)<1) continue;
|
||
// for (i=0;freqs[i];i++) if (freqs[i]==f) break;
|
||
// if (freqs[i]) freq=i+1;
|
||
// /* for Galileo E5b: save to E2, not E7 */
|
||
// if (satsys(pcv.sat,NULL)==SYS_GAL&&f==7) freq=2;
|
||
// }
|
||
// else if (strstr(buff+60,"END OF FREQUENCY")) {
|
||
// freq=0;
|
||
// }
|
||
// else if (strstr(buff+60,"NORTH / EAST / UP")) {
|
||
// if (freq<1||NFREQ<freq) continue;
|
||
// if (decodef(buff,3,neu)<3) continue;
|
||
// pcv.off[freq-1][0]=neu[pcv.sat?0:1]; /* x or e */
|
||
// pcv.off[freq-1][1]=neu[pcv.sat?1:0]; /* y or n */
|
||
// pcv.off[freq-1][2]=neu[2]; /* z or u */
|
||
// }
|
||
// else if (strstr(buff,"NOAZI")) {
|
||
// if (freq<1||NFREQ<freq) continue;
|
||
// if ((i=decodef(buff+8,19,pcv.var[freq-1]))<=0) continue;
|
||
// for (;i<19;i++) pcv.var[freq-1][i]=pcv.var[freq-1][i-1];
|
||
// }
|
||
// }
|
||
// fclose(fp);
|
||
//
|
||
// return 1;
|
||
// }
|
||
/* read antenna parameters ------------------------------------------------------
|
||
* read antenna parameters
|
||
* args : char *file I antenna parameter file (antex)
|
||
* pcvs_t *pcvs IO antenna parameters
|
||
* return : status (1:ok,0:file open error)
|
||
* notes : file with the externsion .atx or .ATX is recognized as antex
|
||
* file except for antex is recognized ngs antenna parameters
|
||
* see reference [3]
|
||
* only support non-azimuth-depedent parameters
|
||
*-----------------------------------------------------------------------------*/
|
||
// extern int readpcv(const char *file, pcvs_t *pcvs)
|
||
//{
|
||
// pcv_t *pcv;
|
||
// char *ext;
|
||
// int i,stat;
|
||
//
|
||
// trace(3,"readpcv: file=%s\n",file);
|
||
//
|
||
// if (!(ext=strrchr(file,'.'))) ext="";
|
||
//
|
||
// if (!strcmp(ext,".atx")||!strcmp(ext,".ATX")) {
|
||
// stat=readantex(file,pcvs);
|
||
// }
|
||
// else {
|
||
// stat=readngspcv(file,pcvs);
|
||
// }
|
||
// for (i=0;i<pcvs->n;i++) {
|
||
// pcv=pcvs->pcv+i;
|
||
// trace(4,"sat=%2d type=%20s code=%s off=%8.4f %8.4f %8.4f %8.4f %8.4f %8.4f\n",
|
||
// pcv->sat,pcv->type,pcv->code,pcv->off[0][0],pcv->off[0][1],
|
||
// pcv->off[0][2],pcv->off[1][0],pcv->off[1][1],pcv->off[1][2]);
|
||
// }
|
||
// return stat;
|
||
// }
|
||
/* search antenna parameter ----------------------------------------------------
|
||
* read satellite antenna phase center position
|
||
* args : int sat I satellite number (0: receiver antenna)
|
||
* char *type I antenna type for receiver antenna
|
||
* gtime_t time I time to search parameters
|
||
* pcvs_t *pcvs IO antenna parameters
|
||
* return : antenna parameter (NULL: no antenna)
|
||
*-----------------------------------------------------------------------------*/
|
||
// extern pcv_t *searchpcv(int sat, const char *type, gtime_t time,
|
||
// const pcvs_t *pcvs)
|
||
//{
|
||
// pcv_t *pcv;
|
||
// char buff[MAXANT],*types[2],*p;
|
||
// int i,j,n=0;
|
||
//
|
||
// trace(4,"searchpcv: sat=%2d type=%s\n",sat,type);
|
||
//
|
||
// if (sat) { /* search satellite antenna */
|
||
// for (i=0;i<pcvs->n;i++) {
|
||
// pcv=pcvs->pcv+i;
|
||
// if (pcv->sat!=sat) continue;
|
||
// if (pcv->ts.time!=0&&timediff(pcv->ts,time)>0.0) continue;
|
||
// if (pcv->te.time!=0&&timediff(pcv->te,time)<0.0) continue;
|
||
// return pcv;
|
||
// }
|
||
// }
|
||
// else {
|
||
// strcpy(buff,type);
|
||
// for (p=strtok(buff," ");p&&n<2;p=strtok(NULL," ")) types[n++]=p;
|
||
// if (n<=0) return NULL;
|
||
//
|
||
// /* search receiver antenna with radome at first */
|
||
// for (i=0;i<pcvs->n;i++) {
|
||
// pcv=pcvs->pcv+i;
|
||
// for (j=0;j<n;j++) if (!strstr(pcv->type,types[j])) break;
|
||
// if (j>=n) return pcv;
|
||
// }
|
||
// /* search receiver antenna without radome */
|
||
// for (i=0;i<pcvs->n;i++) {
|
||
// pcv=pcvs->pcv+i;
|
||
// if (strstr(pcv->type,types[0])!=pcv->type) continue;
|
||
//
|
||
// trace(2,"pcv without radome is used type=%s\n",type);
|
||
// return pcv;
|
||
// }
|
||
// }
|
||
// return NULL;
|
||
// }
|
||
/* read station positions ------------------------------------------------------
|
||
* read positions from station position file
|
||
* args : char *file I station position file containing
|
||
* lat(deg) lon(deg) height(m) name in a line
|
||
* char *rcvs I station name
|
||
* double *pos O station position {lat,lon,h} (rad/m)
|
||
* (all 0 if search error)
|
||
* return : none
|
||
*-----------------------------------------------------------------------------*/
|
||
extern void readpos(const char *file, const char *rcv, double *pos)
|
||
{
|
||
static double poss[2048][3];
|
||
static char stas[2048][16];
|
||
FILE *fp;
|
||
int i, j, len, np = 0;
|
||
char buff[256], str[256];
|
||
|
||
trace(3, "readpos: file=%s\n", file);
|
||
|
||
if (!(fp = fopen(file, "r")))
|
||
{
|
||
fprintf(stderr, "reference position file open error : %s\n", file);
|
||
return;
|
||
}
|
||
while (np < 2048 && fgets(buff, sizeof(buff), fp))
|
||
{
|
||
if (buff[0] == '%' || buff[0] == '#')
|
||
continue;
|
||
if (sscanf(buff, "%lf %lf %lf %s", &poss[np][0], &poss[np][1], &poss[np][2],
|
||
str) < 4)
|
||
continue;
|
||
sprintf(stas[np++], "%.15s", str);
|
||
}
|
||
fclose(fp);
|
||
len = (int)strlen(rcv);
|
||
for (i = 0; i < np; i++)
|
||
{
|
||
if (strncmp(stas[i], rcv, len))
|
||
continue;
|
||
for (j = 0; j < 3; j++)
|
||
pos[j] = poss[i][j];
|
||
pos[0] *= D2R;
|
||
pos[1] *= D2R;
|
||
return;
|
||
}
|
||
pos[0] = pos[1] = pos[2] = 0.0;
|
||
}
|
||
/* read blq record -----------------------------------------------------------*/
|
||
static int readblqrecord(FILE *fp, double *odisp)
|
||
{
|
||
double v[11];
|
||
char buff[256];
|
||
int i, n = 0;
|
||
|
||
while (fgets(buff, sizeof(buff), fp))
|
||
{
|
||
if (!strncmp(buff, "$$", 2))
|
||
continue;
|
||
if (sscanf(buff, "%lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf",
|
||
v, v + 1, v + 2, v + 3, v + 4, v + 5, v + 6, v + 7, v + 8, v + 9, v + 10) < 11)
|
||
continue;
|
||
for (i = 0; i < 11; i++)
|
||
odisp[n + i * 6] = v[i];
|
||
if (++n == 6)
|
||
return 1;
|
||
}
|
||
return 0;
|
||
}
|
||
/* read blq ocean tide loading parameters --------------------------------------
|
||
* read blq ocean tide loading parameters
|
||
* args : char *file I BLQ ocean tide loading parameter file
|
||
* char *sta I station name
|
||
* double *odisp O ocean tide loading parameters
|
||
* return : status (1:ok,0:file open error)
|
||
*-----------------------------------------------------------------------------*/
|
||
extern int readblq(const char *file, const char *sta, double *odisp)
|
||
{
|
||
FILE *fp;
|
||
char buff[256], staname[32] = "", name[32], *p;
|
||
|
||
/* station name to upper case */
|
||
(void)sscanf(sta, "%16s", staname);
|
||
for (p = staname; (*p = (char)toupper((int)(*p))); p++)
|
||
;
|
||
|
||
if (!(fp = fopen(file, "r")))
|
||
{
|
||
trace(2, "blq file open error: file=%s\n", file);
|
||
return 0;
|
||
}
|
||
while (fgets(buff, sizeof(buff), fp))
|
||
{
|
||
if (!strncmp(buff, "$$", 2) || strlen(buff) < 2)
|
||
continue;
|
||
|
||
if (sscanf(buff + 2, "%16s", name) < 1)
|
||
continue;
|
||
for (p = name; (*p = (char)toupper((int)(*p))); p++)
|
||
;
|
||
if (strcmp(name, staname))
|
||
continue;
|
||
|
||
/* read blq record */
|
||
if (readblqrecord(fp, odisp))
|
||
{
|
||
fclose(fp);
|
||
return 1;
|
||
}
|
||
}
|
||
fclose(fp);
|
||
trace(2, "no otl parameters: sta=%s file=%s\n", sta, file);
|
||
return 0;
|
||
}
|
||
/* read earth rotation parameters ----------------------------------------------
|
||
* read earth rotation parameters
|
||
* args : char *file I IGS ERP file (IGS ERP ver.2)
|
||
* erp_t *erp O earth rotation parameters
|
||
* return : status (1:ok,0:file open error)
|
||
*-----------------------------------------------------------------------------*/
|
||
extern int readerp(const char *file, erp_t *erp)
|
||
{
|
||
FILE *fp;
|
||
erpd_t *erp_data;
|
||
double v[14] = {0};
|
||
char buff[256];
|
||
|
||
trace(3, "readerp: file=%s\n", file);
|
||
|
||
if (!(fp = fopen(file, "r")))
|
||
{
|
||
trace(2, "erp file open error: file=%s\n", file);
|
||
return 0;
|
||
}
|
||
while (fgets(buff, sizeof(buff), fp))
|
||
{
|
||
if (sscanf(buff, "%lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf",
|
||
v, v + 1, v + 2, v + 3, v + 4, v + 5, v + 6, v + 7, v + 8, v + 9, v + 10, v + 11, v + 12, v + 13) < 5)
|
||
{
|
||
continue;
|
||
}
|
||
if (erp->n >= erp->nmax)
|
||
{
|
||
erp->nmax = erp->nmax <= 0 ? 128 : erp->nmax * 2;
|
||
erp_data = (erpd_t *)realloc(erp->data, sizeof(erpd_t) * erp->nmax);
|
||
if (!erp_data)
|
||
{
|
||
free(erp->data);
|
||
erp->data = NULL;
|
||
erp->n = erp->nmax = 0;
|
||
fclose(fp);
|
||
return 0;
|
||
}
|
||
erp->data = erp_data;
|
||
}
|
||
erp->data[erp->n].mjd = v[0];
|
||
erp->data[erp->n].xp = v[1] * 1E-6 * AS2R;
|
||
erp->data[erp->n].yp = v[2] * 1E-6 * AS2R;
|
||
erp->data[erp->n].ut1_utc = v[3] * 1E-7;
|
||
erp->data[erp->n].lod = v[4] * 1E-7;
|
||
erp->data[erp->n].xpr = v[12] * 1E-6 * AS2R;
|
||
erp->data[erp->n++].ypr = v[13] * 1E-6 * AS2R;
|
||
}
|
||
fclose(fp);
|
||
return 1;
|
||
}
|
||
/* get earth rotation parameter values -----------------------------------------
|
||
* get earth rotation parameter values
|
||
* args : erp_t *erp I earth rotation parameters
|
||
* gtime_t time I time (gpst)
|
||
* double *erpv O erp values {xp,yp,ut1_utc,lod} (rad,rad,s,s/d)
|
||
* return : status (1:ok,0:error)
|
||
* <20><>ȡERP<52><50><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ת<EFBFBD><D7AA><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ֵ
|
||
* <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>3<EFBFBD><33><EFBFBD><EFBFBD>
|
||
erp_t *erp I earth rotation parameters
|
||
gtime_t time I time (gpst)
|
||
double *erpv O erp values {xp,yp,ut1_utc,lod} (rad,rad,s,s/d)
|
||
<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>:
|
||
int O (1:ok,0:error)
|
||
*-----------------------------------------------------------------------------*/
|
||
extern int geterp(const erp_t *erp, gtime_t time, double *erpv)
|
||
{
|
||
const double ep[] = {2000, 1, 1, 12, 0, 0};
|
||
double mjd, day, a;
|
||
int i, j, k;
|
||
|
||
trace(4, "geterp:\n");
|
||
|
||
if (erp->n <= 0)
|
||
return 0;
|
||
// 1<><31><EFBFBD><EFBFBD><EFBFBD>㵱ǰʱ<C7B0><CAB1><EFBFBD><EFBFBD>ERP<52><50><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʱ<EFBFBD><CAB1><EFBFBD>IJ<EFBFBD>ֵ
|
||
mjd = 51544.5 + (timediff(gpst2utc(time), epoch2time(ep))) / 86400.0;
|
||
|
||
// 2<><32><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ǰʱ<C7B0><CAB1><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ERP<52><50><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʱ<EFBFBD>䣬<EFBFBD><E4A3AC><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʱ<EFBFBD><CAB1><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
||
if (mjd <= erp->data[0].mjd)
|
||
{
|
||
day = mjd - erp->data[0].mjd;
|
||
erpv[0] = erp->data[0].xp + erp->data[0].xpr * day;
|
||
erpv[1] = erp->data[0].yp + erp->data[0].ypr * day;
|
||
erpv[2] = erp->data[0].ut1_utc - erp->data[0].lod * day;
|
||
erpv[3] = erp->data[0].lod;
|
||
return 1;
|
||
}
|
||
// 3<><33><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ǰʱ<C7B0><CAB1><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ERP<52><50><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʱ<EFBFBD>䣬<EFBFBD><E4A3AC><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʱ<EFBFBD><CAB1><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
||
if (mjd >= erp->data[erp->n - 1].mjd)
|
||
{
|
||
day = mjd - erp->data[erp->n - 1].mjd;
|
||
erpv[0] = erp->data[erp->n - 1].xp + erp->data[erp->n - 1].xpr * day;
|
||
erpv[1] = erp->data[erp->n - 1].yp + erp->data[erp->n - 1].ypr * day;
|
||
erpv[2] = erp->data[erp->n - 1].ut1_utc - erp->data[erp->n - 1].lod * day;
|
||
erpv[3] = erp->data[erp->n - 1].lod;
|
||
return 1;
|
||
}
|
||
// 4<><34><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ǰʱ<C7B0><CAB1><EFBFBD><EFBFBD>ERP<52><50><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʱ<EFBFBD><CAB1>֮<EFBFBD>䣬<EFBFBD><E4A3AC><EFBFBD><EFBFBD><EFBFBD>ҵ<EFBFBD><D2B5><EFBFBD><EFBFBD>ӽ<EFBFBD><D3BD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʱ<EFBFBD>䣬Ȼ<E4A3AC><C8BB><EFBFBD>ò<EFBFBD>ֵ
|
||
for (j = 0, k = erp->n - 1; j < k - 1;)
|
||
{
|
||
i = (j + k) / 2;
|
||
if (mjd < erp->data[i].mjd)
|
||
k = i;
|
||
else
|
||
j = i;
|
||
}
|
||
if (erp->data[j].mjd == erp->data[j + 1].mjd)
|
||
{
|
||
a = 0.5;
|
||
}
|
||
else
|
||
{
|
||
a = (mjd - erp->data[j].mjd) / (erp->data[j + 1].mjd - erp->data[j].mjd);
|
||
}
|
||
erpv[0] = (1.0 - a) * erp->data[j].xp + a * erp->data[j + 1].xp;
|
||
erpv[1] = (1.0 - a) * erp->data[j].yp + a * erp->data[j + 1].yp;
|
||
erpv[2] = (1.0 - a) * erp->data[j].ut1_utc + a * erp->data[j + 1].ut1_utc;
|
||
erpv[3] = (1.0 - a) * erp->data[j].lod + a * erp->data[j + 1].lod;
|
||
return 1;
|
||
}
|
||
/* compare ephemeris ---------------------------------------------------------*/
|
||
static int cmpeph(const void *p1, const void *p2)
|
||
{
|
||
eph_t *q1 = (eph_t *)p1, *q2 = (eph_t *)p2;
|
||
return q1->ttr.time != q2->ttr.time ? (int)(q1->ttr.time - q2->ttr.time) : (q1->toe.time != q2->toe.time ? (int)(q1->toe.time - q2->toe.time) : q1->sat - q2->sat);
|
||
}
|
||
/* sort and unique ephemeris -------------------------------------------------*/
|
||
static void uniqeph(nav_t *nav)
|
||
{
|
||
eph_t *nav_eph;
|
||
int i, j;
|
||
|
||
trace(3, "uniqeph: n=%d\n", nav->n);
|
||
|
||
if (nav->n <= 0)
|
||
return;
|
||
|
||
qsort(nav->eph, nav->n, sizeof(eph_t), cmpeph);
|
||
|
||
for (i = 1, j = 0; i < nav->n; i++)
|
||
{
|
||
if (nav->eph[i].sat != nav->eph[j].sat ||
|
||
nav->eph[i].iode != nav->eph[j].iode)
|
||
{
|
||
nav->eph[++j] = nav->eph[i];
|
||
}
|
||
}
|
||
nav->n = j + 1;
|
||
|
||
if (!(nav_eph = (eph_t *)realloc(nav->eph, sizeof(eph_t) * nav->n)))
|
||
{
|
||
trace(1, "uniqeph malloc error n=%d\n", nav->n);
|
||
free(nav->eph);
|
||
nav->eph = NULL;
|
||
nav->n = nav->nmax = 0;
|
||
return;
|
||
}
|
||
nav->eph = nav_eph;
|
||
nav->nmax = nav->n;
|
||
|
||
trace(4, "uniqeph: n=%d\n", nav->n);
|
||
}
|
||
/* compare glonass ephemeris -------------------------------------------------*/
|
||
static int cmpgeph(const void *p1, const void *p2)
|
||
{
|
||
geph_t *q1 = (geph_t *)p1, *q2 = (geph_t *)p2;
|
||
return q1->tof.time != q2->tof.time ? (int)(q1->tof.time - q2->tof.time) : (q1->toe.time != q2->toe.time ? (int)(q1->toe.time - q2->toe.time) : q1->sat - q2->sat);
|
||
}
|
||
/* sort and unique glonass ephemeris -----------------------------------------*/
|
||
static void uniqgeph(nav_t *nav)
|
||
{
|
||
geph_t *nav_geph;
|
||
int i, j;
|
||
|
||
trace(3, "uniqgeph: ng=%d\n", nav->ng);
|
||
|
||
if (nav->ng <= 0)
|
||
return;
|
||
|
||
qsort(nav->geph, nav->ng, sizeof(geph_t), cmpgeph);
|
||
|
||
for (i = j = 0; i < nav->ng; i++)
|
||
{
|
||
if (nav->geph[i].sat != nav->geph[j].sat ||
|
||
nav->geph[i].toe.time != nav->geph[j].toe.time ||
|
||
nav->geph[i].svh != nav->geph[j].svh)
|
||
{
|
||
nav->geph[++j] = nav->geph[i];
|
||
}
|
||
}
|
||
nav->ng = j + 1;
|
||
|
||
if (!(nav_geph = (geph_t *)realloc(nav->geph, sizeof(geph_t) * nav->ng)))
|
||
{
|
||
trace(1, "uniqgeph malloc error ng=%d\n", nav->ng);
|
||
free(nav->geph);
|
||
nav->geph = NULL;
|
||
nav->ng = nav->ngmax = 0;
|
||
return;
|
||
}
|
||
nav->geph = nav_geph;
|
||
nav->ngmax = nav->ng;
|
||
|
||
trace(4, "uniqgeph: ng=%d\n", nav->ng);
|
||
}
|
||
/* compare sbas ephemeris ----------------------------------------------------*/
|
||
// static int cmpseph(const void *p1, const void *p2)
|
||
//{
|
||
// seph_t *q1=(seph_t *)p1,*q2=(seph_t *)p2;
|
||
// return q1->tof.time!=q2->tof.time?(int)(q1->tof.time-q2->tof.time):
|
||
// (q1->t0.time!=q2->t0.time?(int)(q1->t0.time-q2->t0.time):
|
||
// q1->sat-q2->sat);
|
||
// }
|
||
/* sort and unique sbas ephemeris --------------------------------------------*/
|
||
// static void uniqseph(nav_t *nav)
|
||
//{
|
||
// seph_t *nav_seph;
|
||
// int i,j;
|
||
//
|
||
// trace(3,"uniqseph: ns=%d\n",nav->ns);
|
||
//
|
||
// if (nav->ns<=0) return;
|
||
//
|
||
// qsort(nav->seph,nav->ns,sizeof(seph_t),cmpseph);
|
||
//
|
||
// for (i=j=0;i<nav->ns;i++) {
|
||
// if (nav->seph[i].sat!=nav->seph[j].sat||
|
||
// nav->seph[i].t0.time!=nav->seph[j].t0.time) {
|
||
// nav->seph[++j]=nav->seph[i];
|
||
// }
|
||
// }
|
||
// nav->ns=j+1;
|
||
//
|
||
// if (!(nav_seph=(seph_t *)realloc(nav->seph,sizeof(seph_t)*nav->ns))) {
|
||
// trace(1,"uniqseph malloc error ns=%d\n",nav->ns);
|
||
// free(nav->seph); nav->seph=NULL; nav->ns=nav->nsmax=0;
|
||
// return;
|
||
// }
|
||
// nav->seph=nav_seph;
|
||
// nav->nsmax=nav->ns;
|
||
//
|
||
// trace(4,"uniqseph: ns=%d\n",nav->ns);
|
||
// }
|
||
/* unique ephemerides ----------------------------------------------------------
|
||
* unique ephemerides in navigation data and update carrier wave length
|
||
* args : nav_t *nav IO navigation data
|
||
* return : number of epochs
|
||
*-----------------------------------------------------------------------------*/
|
||
extern void uniqnav(nav_t *nav)
|
||
{
|
||
trace(3, "uniqnav: neph=%d ngeph=%d nseph=%d\n", nav->n, nav->ng, nav->ns);
|
||
|
||
/* unique ephemeris */
|
||
uniqeph(nav);
|
||
uniqgeph(nav);
|
||
// uniqseph(nav);
|
||
}
|
||
/* compare observation data -------------------------------------------------*/
|
||
static int cmpobs(const void *p1, const void *p2)
|
||
{
|
||
obsd_t *q1 = (obsd_t *)p1, *q2 = (obsd_t *)p2;
|
||
double tt = timediff(q1->time, q2->time);
|
||
if (fabs(tt) > DTTOL)
|
||
return tt < 0 ? -1 : 1;
|
||
if (q1->rcv != q2->rcv)
|
||
return (int)q1->rcv - (int)q2->rcv;
|
||
return (int)q1->sat - (int)q2->sat;
|
||
}
|
||
/* sort and unique observation data --------------------------------------------
|
||
* sort and unique observation data by time, rcv, sat
|
||
* args : obs_t *obs IO observation data
|
||
* return : number of epochs
|
||
*-----------------------------------------------------------------------------*/
|
||
extern int sortobs(obs_t *obs)
|
||
{
|
||
int i, j, n;
|
||
|
||
trace(3, "sortobs: nobs=%d\n", obs->n);
|
||
|
||
if (obs->n <= 0)
|
||
return 0;
|
||
|
||
qsort(obs->data, obs->n, sizeof(obsd_t), cmpobs);
|
||
|
||
/* delete duplicated data */
|
||
for (i = j = 0; i < obs->n; i++)
|
||
{
|
||
if (obs->data[i].sat != obs->data[j].sat ||
|
||
obs->data[i].rcv != obs->data[j].rcv ||
|
||
timediff(obs->data[i].time, obs->data[j].time) != 0.0)
|
||
{
|
||
obs->data[++j] = obs->data[i];
|
||
}
|
||
}
|
||
obs->n = j + 1;
|
||
|
||
for (i = n = 0; i < obs->n; i = j, n++)
|
||
{
|
||
for (j = i + 1; j < obs->n; j++)
|
||
{
|
||
if (timediff(obs->data[j].time, obs->data[i].time) > DTTOL)
|
||
break;
|
||
}
|
||
}
|
||
return n;
|
||
}
|
||
/* screen by time --------------------------------------------------------------
|
||
* screening by time start, time end, and time interval
|
||
* args : gtime_t time I time
|
||
* gtime_t ts I time start (ts.time==0:no screening by ts)
|
||
* gtime_t te I time end (te.time==0:no screening by te)
|
||
* double tint I time interval (s) (0.0:no screen by tint)
|
||
* return : 1:on condition, 0:not on condition
|
||
*-----------------------------------------------------------------------------*/
|
||
extern int screent(gtime_t time, gtime_t ts, gtime_t te, double tint)
|
||
{
|
||
return (tint <= 0.0 || fmod(time2gpst(time, NULL) + DTTOL, tint) <= DTTOL * 2.0) &&
|
||
(ts.time == 0 || timediff(time, ts) >= -DTTOL) &&
|
||
(te.time == 0 || timediff(time, te) < DTTOL);
|
||
}
|
||
/* read/save navigation data ---------------------------------------------------
|
||
* save or load navigation data
|
||
* args : char file I file path
|
||
* nav_t nav O/I navigation data
|
||
* return : status (1:ok,0:no file)
|
||
*-----------------------------------------------------------------------------*/
|
||
extern int readnav(const char *file, nav_t *nav)
|
||
{
|
||
FILE *fp;
|
||
eph_t eph0 = {0};
|
||
geph_t geph0 = {0};
|
||
char buff[4096], *p;
|
||
long toe_time, tof_time, toc_time, ttr_time;
|
||
int i, sat, prn;
|
||
|
||
trace(3, "loadnav: file=%s\n", file);
|
||
|
||
if (!(fp = fopen(file, "r")))
|
||
return 0;
|
||
|
||
while (fgets(buff, sizeof(buff), fp))
|
||
{
|
||
if (!strncmp(buff, "IONUTC", 6))
|
||
{
|
||
for (i = 0; i < 8; i++)
|
||
nav->ion_gps[i] = 0.0;
|
||
for (i = 0; i < 8; i++)
|
||
nav->utc_gps[i] = 0.0;
|
||
(void)sscanf(buff, "IONUTC,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf",
|
||
&nav->ion_gps[0], &nav->ion_gps[1], &nav->ion_gps[2], &nav->ion_gps[3],
|
||
&nav->ion_gps[4], &nav->ion_gps[5], &nav->ion_gps[6], &nav->ion_gps[7],
|
||
&nav->utc_gps[0], &nav->utc_gps[1], &nav->utc_gps[2], &nav->utc_gps[3],
|
||
&nav->utc_gps[4]);
|
||
continue;
|
||
}
|
||
if ((p = strchr(buff, ',')))
|
||
*p = '\0';
|
||
else
|
||
continue;
|
||
if (!(sat = satid2no(buff)))
|
||
continue;
|
||
if (satsys(sat, &prn) == SYS_GLO)
|
||
{
|
||
nav->geph[prn - 1] = geph0;
|
||
nav->geph[prn - 1].sat = sat;
|
||
toe_time = tof_time = 0;
|
||
(void)sscanf(p + 1, "%d,%d,%d,%d,%d,%ld,%ld,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,"
|
||
"%lf,%lf,%lf,%lf",
|
||
&nav->geph[prn - 1].iode, &nav->geph[prn - 1].frq, &nav->geph[prn - 1].svh,
|
||
&nav->geph[prn - 1].sva, &nav->geph[prn - 1].age,
|
||
&toe_time, &tof_time,
|
||
&nav->geph[prn - 1].pos[0], &nav->geph[prn - 1].pos[1], &nav->geph[prn - 1].pos[2],
|
||
&nav->geph[prn - 1].vel[0], &nav->geph[prn - 1].vel[1], &nav->geph[prn - 1].vel[2],
|
||
&nav->geph[prn - 1].acc[0], &nav->geph[prn - 1].acc[1], &nav->geph[prn - 1].acc[2],
|
||
&nav->geph[prn - 1].taun, &nav->geph[prn - 1].gamn, &nav->geph[prn - 1].dtaun);
|
||
nav->geph[prn - 1].toe.time = toe_time;
|
||
nav->geph[prn - 1].tof.time = tof_time;
|
||
}
|
||
else
|
||
{
|
||
nav->eph[sat - 1] = eph0;
|
||
nav->eph[sat - 1].sat = sat;
|
||
toe_time = toc_time = ttr_time = 0;
|
||
(void)sscanf(p + 1, "%d,%d,%d,%d,%ld,%ld,%ld,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,"
|
||
"%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%d,%d",
|
||
&nav->eph[sat - 1].iode, &nav->eph[sat - 1].iodc, &nav->eph[sat - 1].sva,
|
||
&nav->eph[sat - 1].svh,
|
||
&toe_time, &toc_time, &ttr_time,
|
||
&nav->eph[sat - 1].A, &nav->eph[sat - 1].e, &nav->eph[sat - 1].i0,
|
||
&nav->eph[sat - 1].OMG0, &nav->eph[sat - 1].omg, &nav->eph[sat - 1].M0,
|
||
&nav->eph[sat - 1].deln, &nav->eph[sat - 1].OMGd, &nav->eph[sat - 1].idot,
|
||
&nav->eph[sat - 1].crc, &nav->eph[sat - 1].crs, &nav->eph[sat - 1].cuc,
|
||
&nav->eph[sat - 1].cus, &nav->eph[sat - 1].cic, &nav->eph[sat - 1].cis,
|
||
&nav->eph[sat - 1].toes, &nav->eph[sat - 1].fit, &nav->eph[sat - 1].f0,
|
||
&nav->eph[sat - 1].f1, &nav->eph[sat - 1].f2, &nav->eph[sat - 1].tgd[0],
|
||
&nav->eph[sat - 1].code, &nav->eph[sat - 1].flag);
|
||
nav->eph[sat - 1].toe.time = toe_time;
|
||
nav->eph[sat - 1].toc.time = toc_time;
|
||
nav->eph[sat - 1].ttr.time = ttr_time;
|
||
}
|
||
}
|
||
fclose(fp);
|
||
return 1;
|
||
}
|
||
extern int savenav(const char *file, const nav_t *nav)
|
||
{
|
||
FILE *fp;
|
||
int i;
|
||
char id[32];
|
||
|
||
trace(3, "savenav: file=%s\n", file);
|
||
|
||
if (!(fp = fopen(file, "w")))
|
||
return 0;
|
||
|
||
for (i = 0; i < MAXSAT; i++)
|
||
{
|
||
if (nav->eph[i].ttr.time == 0)
|
||
continue;
|
||
satno2id(nav->eph[i].sat, id);
|
||
fprintf(fp, "%s,%d,%d,%d,%d,%d,%d,%d,%.14E,%.14E,%.14E,%.14E,%.14E,%.14E,"
|
||
"%.14E,%.14E,%.14E,%.14E,%.14E,%.14E,%.14E,%.14E,%.14E,%.14E,"
|
||
"%.14E,%.14E,%.14E,%.14E,%.14E,%d,%d\n",
|
||
id, nav->eph[i].iode, nav->eph[i].iodc, nav->eph[i].sva,
|
||
nav->eph[i].svh, (int)nav->eph[i].toe.time,
|
||
(int)nav->eph[i].toc.time, (int)nav->eph[i].ttr.time,
|
||
nav->eph[i].A, nav->eph[i].e, nav->eph[i].i0, nav->eph[i].OMG0,
|
||
nav->eph[i].omg, nav->eph[i].M0, nav->eph[i].deln, nav->eph[i].OMGd,
|
||
nav->eph[i].idot, nav->eph[i].crc, nav->eph[i].crs, nav->eph[i].cuc,
|
||
nav->eph[i].cus, nav->eph[i].cic, nav->eph[i].cis, nav->eph[i].toes,
|
||
nav->eph[i].fit, nav->eph[i].f0, nav->eph[i].f1, nav->eph[i].f2,
|
||
nav->eph[i].tgd[0], nav->eph[i].code, nav->eph[i].flag);
|
||
}
|
||
for (i = 0; i < MAXPRNGLO; i++)
|
||
{
|
||
if (nav->geph[i].tof.time == 0)
|
||
continue;
|
||
satno2id(nav->geph[i].sat, id);
|
||
fprintf(fp, "%s,%d,%d,%d,%d,%d,%d,%d,%.14E,%.14E,%.14E,%.14E,%.14E,%.14E,"
|
||
"%.14E,%.14E,%.14E,%.14E,%.14E,%.14E\n",
|
||
id, nav->geph[i].iode, nav->geph[i].frq, nav->geph[i].svh,
|
||
nav->geph[i].sva, nav->geph[i].age, (int)nav->geph[i].toe.time,
|
||
(int)nav->geph[i].tof.time,
|
||
nav->geph[i].pos[0], nav->geph[i].pos[1], nav->geph[i].pos[2],
|
||
nav->geph[i].vel[0], nav->geph[i].vel[1], nav->geph[i].vel[2],
|
||
nav->geph[i].acc[0], nav->geph[i].acc[1], nav->geph[i].acc[2],
|
||
nav->geph[i].taun, nav->geph[i].gamn, nav->geph[i].dtaun);
|
||
}
|
||
/*fprintf(fp,"IONUTC,%.14E,%.14E,%.14E,%.14E,%.14E,%.14E,%.14E,%.14E,%.14E,"
|
||
"%.14E,%.14E,%.14E,%.0f",
|
||
nav->ion_gps[0],nav->ion_gps[1],nav->ion_gps[2],nav->ion_gps[3],
|
||
nav->ion_gps[4],nav->ion_gps[5],nav->ion_gps[6],nav->ion_gps[7],
|
||
nav->utc_gps[0],nav->utc_gps[1],nav->utc_gps[2],nav->utc_gps[3],
|
||
nav->utc_gps[4]);*/
|
||
|
||
fclose(fp);
|
||
return 1;
|
||
}
|
||
/* free observation data -------------------------------------------------------
|
||
* free memory for observation data
|
||
* args : obs_t *obs IO observation data
|
||
* return : none
|
||
*-----------------------------------------------------------------------------*/
|
||
extern void freeobs(obs_t *obs)
|
||
{
|
||
free(obs->data);
|
||
obs->data = NULL;
|
||
obs->n = obs->nmax = 0;
|
||
}
|
||
/* free navigation data ---------------------------------------------------------
|
||
* free memory for navigation data
|
||
* args : nav_t *nav IO navigation data
|
||
* int opt I option (or of followings)
|
||
* (0x01: gps/qzs ephmeris, 0x02: glonass ephemeris,
|
||
* 0x04: sbas ephemeris, 0x08: precise ephemeris,
|
||
* 0x10: precise clock 0x20: almanac,
|
||
* 0x40: tec data)
|
||
* return : none
|
||
*-----------------------------------------------------------------------------*/
|
||
extern void freenav(nav_t *nav, int opt)
|
||
{
|
||
if (opt & 0x01)
|
||
{
|
||
free(nav->eph);
|
||
nav->eph = NULL;
|
||
nav->n = nav->nmax = 0;
|
||
}
|
||
if (opt & 0x02)
|
||
{
|
||
free(nav->geph);
|
||
nav->geph = NULL;
|
||
nav->ng = nav->ngmax = 0;
|
||
}
|
||
// if (opt&0x04) {free(nav->seph); nav->seph=NULL; nav->ns=nav->nsmax=0;}
|
||
// if (opt&0x08) {free(nav->peph); nav->peph=NULL; nav->ne=nav->nemax=0;}
|
||
// if (opt&0x10) {free(nav->pclk); nav->pclk=NULL; nav->nc=nav->ncmax=0;}
|
||
// if (opt&0x20) {free(nav->alm ); nav->alm =NULL; nav->na=nav->namax=0;}
|
||
// if (opt&0x40) {free(nav->tec ); nav->tec =NULL; nav->nt=nav->ntmax=0;}
|
||
}
|
||
/* debug trace functions -----------------------------------------------------*/
|
||
#ifdef TRACE
|
||
|
||
static FILE *fp_trace = NULL; /* file pointer of trace */
|
||
static char file_trace[1024]; /* trace file */
|
||
static int level_trace = 0; /* level of trace */
|
||
static uint32_t tick_trace = 0; /* tick time at traceopen (ms) */
|
||
static gtime_t time_trace = {0}; /* time at traceopen */
|
||
static lock_t lock_trace; /* lock for trace */
|
||
|
||
static void traceswap(void)
|
||
{
|
||
gtime_t time = utc2gpst(timeget());
|
||
char path[1024];
|
||
|
||
lock(&lock_trace);
|
||
|
||
if ((int)(time2gpst(time, NULL) / INT_SWAP_TRAC) ==
|
||
(int)(time2gpst(time_trace, NULL) / INT_SWAP_TRAC))
|
||
{
|
||
unlock(&lock_trace);
|
||
return;
|
||
}
|
||
time_trace = time;
|
||
|
||
if (!reppath(file_trace, path, time, "", ""))
|
||
{
|
||
unlock(&lock_trace);
|
||
return;
|
||
}
|
||
if (fp_trace)
|
||
fclose(fp_trace);
|
||
|
||
if (!(fp_trace = fopen(path, "w")))
|
||
{
|
||
fp_trace = stderr;
|
||
}
|
||
unlock(&lock_trace);
|
||
}
|
||
extern void traceopen(const char *file)
|
||
{
|
||
gtime_t time = utc2gpst(timeget());
|
||
char path[1024];
|
||
|
||
reppath(file, path, time, "", "");
|
||
if (!*path || !(fp_trace = fopen(path, "w")))
|
||
fp_trace = stderr;
|
||
strcpy(file_trace, file);
|
||
tick_trace = tickget();
|
||
time_trace = time;
|
||
initlock(&lock_trace);
|
||
}
|
||
extern void traceclose(void)
|
||
{
|
||
if (fp_trace && fp_trace != stderr)
|
||
fclose(fp_trace);
|
||
fp_trace = NULL;
|
||
file_trace[0] = '\0';
|
||
}
|
||
extern void tracelevel(int level)
|
||
{
|
||
level_trace = level;
|
||
}
|
||
extern int gettracelevel(void)
|
||
{
|
||
return level_trace;
|
||
}
|
||
extern void trace(int level, const char *format, ...)
|
||
{
|
||
va_list ap;
|
||
|
||
/* print error message to stderr */
|
||
if (level <= 1)
|
||
{
|
||
va_start(ap, format);
|
||
vfprintf(stderr, format, ap);
|
||
va_end(ap);
|
||
}
|
||
if (!fp_trace || level > level_trace)
|
||
return;
|
||
traceswap();
|
||
fprintf(fp_trace, "%d ", level);
|
||
va_start(ap, format);
|
||
vfprintf(fp_trace, format, ap);
|
||
va_end(ap);
|
||
fflush(fp_trace);
|
||
}
|
||
extern void tracet(int level, const char *format, ...)
|
||
{
|
||
va_list ap;
|
||
|
||
if (!fp_trace || level > level_trace)
|
||
return;
|
||
traceswap();
|
||
fprintf(fp_trace, "%d %9.3f: ", level, (tickget() - tick_trace) / 1000.0);
|
||
va_start(ap, format);
|
||
vfprintf(fp_trace, format, ap);
|
||
va_end(ap);
|
||
fflush(fp_trace);
|
||
}
|
||
extern void tracemat(int level, const double *A, int n, int m, int p, int q)
|
||
{
|
||
if (!fp_trace || level > level_trace)
|
||
return;
|
||
matfprint(A, n, m, p, q, fp_trace);
|
||
fflush(fp_trace);
|
||
}
|
||
extern void traceobs(int level, const obsd_t *obs, int n)
|
||
{
|
||
char str[64], id[16];
|
||
int i;
|
||
|
||
if (!fp_trace || level > level_trace)
|
||
return;
|
||
for (i = 0; i < n; i++)
|
||
{
|
||
time2str(obs[i].time, str, 3);
|
||
satno2id(obs[i].sat, id);
|
||
fprintf(fp_trace, " (%2d) %s %-3s rcv%d %13.3f %13.3f %13.3f %13.3f %d %d %d %d %x %x %3.1f %3.1f\n",
|
||
i + 1, str, id, obs[i].rcv, obs[i].L[0], obs[i].L[1], obs[i].P[0],
|
||
obs[i].P[1], obs[i].LLI[0], obs[i].LLI[1], obs[i].code[0],
|
||
obs[i].code[1], obs[i].Lstd[0], obs[i].Pstd[0], obs[i].SNR[0] * SNR_UNIT, obs[i].SNR[1] * SNR_UNIT);
|
||
}
|
||
fflush(fp_trace);
|
||
}
|
||
extern void tracenav(int level, const nav_t *nav)
|
||
{
|
||
char s1[64], s2[64], id[16];
|
||
int i;
|
||
|
||
if (!fp_trace || level > level_trace)
|
||
return;
|
||
for (i = 0; i < nav->n; i++)
|
||
{
|
||
time2str(nav->eph[i].toe, s1, 0);
|
||
time2str(nav->eph[i].ttr, s2, 0);
|
||
satno2id(nav->eph[i].sat, id);
|
||
fprintf(fp_trace, "(%3d) %-3s : %s %s %3d %3d %02x\n", i + 1,
|
||
id, s1, s2, nav->eph[i].iode, nav->eph[i].iodc, nav->eph[i].svh);
|
||
}
|
||
fprintf(fp_trace, "(ion) %9.4e %9.4e %9.4e %9.4e\n", nav->ion_gps[0],
|
||
nav->ion_gps[1], nav->ion_gps[2], nav->ion_gps[3]);
|
||
fprintf(fp_trace, "(ion) %9.4e %9.4e %9.4e %9.4e\n", nav->ion_gps[4],
|
||
nav->ion_gps[5], nav->ion_gps[6], nav->ion_gps[7]);
|
||
// fprintf(fp_trace,"(ion) %9.4e %9.4e %9.4e %9.4e\n",nav->ion_gal[0],
|
||
// nav->ion_gal[1],nav->ion_gal[2],nav->ion_gal[3]);
|
||
}
|
||
extern void tracegnav(int level, const nav_t *nav)
|
||
{
|
||
char s1[64], s2[64], id[16];
|
||
int i;
|
||
|
||
if (!fp_trace || level > level_trace)
|
||
return;
|
||
for (i = 0; i < nav->ng; i++)
|
||
{
|
||
time2str(nav->geph[i].toe, s1, 0);
|
||
time2str(nav->geph[i].tof, s2, 0);
|
||
satno2id(nav->geph[i].sat, id);
|
||
fprintf(fp_trace, "(%3d) %-3s : %s %s %2d %2d %8.3f\n", i + 1,
|
||
id, s1, s2, nav->geph[i].frq, nav->geph[i].svh, nav->geph[i].taun * 1E6);
|
||
}
|
||
}
|
||
extern void tracehnav(int level, const nav_t *nav)
|
||
{
|
||
// char s1[64],s2[64],id[16];
|
||
// int i;
|
||
//
|
||
// if (!fp_trace||level>level_trace) return;
|
||
// for (i=0;i<nav->ns;i++) {
|
||
// time2str(nav->seph[i].t0,s1,0);
|
||
// time2str(nav->seph[i].tof,s2,0);
|
||
// satno2id(nav->seph[i].sat,id);
|
||
// fprintf(fp_trace,"(%3d) %-3s : %s %s %2d %2d\n",i+1,
|
||
// id,s1,s2,nav->seph[i].svh,nav->seph[i].sva);
|
||
// }
|
||
}
|
||
extern void tracepeph(int level, const nav_t *nav)
|
||
{
|
||
// char s[64],id[16];
|
||
// int i,j;
|
||
//
|
||
// if (!fp_trace||level>level_trace) return;
|
||
//
|
||
// for (i=0;i<nav->ne;i++) {
|
||
// time2str(nav->peph[i].time,s,0);
|
||
// for (j=0;j<MAXSAT;j++) {
|
||
// satno2id(j+1,id);
|
||
// fprintf(fp_trace,"%-3s %d %-3s %13.3f %13.3f %13.3f %13.3f %6.3f %6.3f %6.3f %6.3f\n",
|
||
// s,nav->peph[i].index,id,
|
||
// nav->peph[i].pos[j][0],nav->peph[i].pos[j][1],
|
||
// nav->peph[i].pos[j][2],nav->peph[i].pos[j][3]*1E9,
|
||
// nav->peph[i].std[j][0],nav->peph[i].std[j][1],
|
||
// nav->peph[i].std[j][2],nav->peph[i].std[j][3]*1E9);
|
||
// }
|
||
// }
|
||
}
|
||
extern void tracepclk(int level, const nav_t *nav)
|
||
{
|
||
// char s[64],id[16];
|
||
// int i,j;
|
||
//
|
||
// if (!fp_trace||level>level_trace) return;
|
||
//
|
||
// for (i=0;i<nav->nc;i++) {
|
||
// time2str(nav->pclk[i].time,s,0);
|
||
// for (j=0;j<MAXSAT;j++) {
|
||
// satno2id(j+1,id);
|
||
// fprintf(fp_trace,"%-3s %d %-3s %13.3f %6.3f\n",
|
||
// s,nav->pclk[i].index,id,
|
||
// nav->pclk[i].clk[j][0]*1E9,nav->pclk[i].std[j][0]*1E9);
|
||
// }
|
||
// }
|
||
}
|
||
extern void traceb(int level, const uint8_t *p, int n)
|
||
{
|
||
int i;
|
||
if (!fp_trace || level > level_trace)
|
||
return;
|
||
for (i = 0; i < n; i++)
|
||
fprintf(fp_trace, "%02X%s", *p++, i % 8 == 7 ? " " : "");
|
||
fprintf(fp_trace, "\n");
|
||
}
|
||
#else
|
||
extern void traceopen(const char *file)
|
||
{
|
||
}
|
||
extern void traceclose(void) {}
|
||
extern void tracelevel(int level) {}
|
||
extern void trace(int level, const char *format, ...) {}
|
||
extern void tracet(int level, const char *format, ...) {}
|
||
extern void tracemat(int level, const double *A, int n, int m, int p, int q) {}
|
||
extern void traceobs(int level, const obsd_t *obs, int n) {}
|
||
extern void tracenav(int level, const nav_t *nav) {}
|
||
extern void tracegnav(int level, const nav_t *nav) {}
|
||
extern void tracehnav(int level, const nav_t *nav) {}
|
||
extern void tracepeph(int level, const nav_t *nav) {}
|
||
extern void tracepclk(int level, const nav_t *nav) {}
|
||
extern void traceb(int level, const uint8_t *p, int n) {}
|
||
|
||
#endif /* TRACE */
|
||
|
||
/* execute command -------------------------------------------------------------
|
||
* execute command line by operating system shell
|
||
* args : char *cmd I command line
|
||
* return : execution status (0:ok,0>:error)
|
||
*-----------------------------------------------------------------------------*/
|
||
extern int execcmd(const char *cmd)
|
||
{
|
||
trace(3, "execcmd: cmd=%s\n", cmd);
|
||
return system(cmd);
|
||
}
|
||
|
||
/* replace string ------------------------------------------------------------*/
|
||
static int repstr(char *str, const char *pat, const char *rep)
|
||
{
|
||
int len = (int)strlen(pat);
|
||
char buff[1024] = {'\0'}, *p, *q, *r;
|
||
|
||
for (p = str, r = buff; *p; p = q + len)
|
||
{
|
||
if (!(q = strstr(p, pat)))
|
||
break;
|
||
strncpy(r, p, q - p);
|
||
r += q - p;
|
||
r += sprintf(r, "%s", rep);
|
||
}
|
||
if (p <= str)
|
||
return 0;
|
||
strcpy(r, p);
|
||
strcpy(str, buff);
|
||
return 1;
|
||
}
|
||
/* replace keywords in file path -----------------------------------------------
|
||
* replace keywords in file path with date, time, rover and base station id
|
||
* args : char *path I file path (see below)
|
||
* char *rpath O file path in which keywords replaced (see below)
|
||
* gtime_t time I time (gpst) (time.time==0: not replaced)
|
||
* char *rov I rover id string ("": not replaced)
|
||
* char *base I base station id string ("": not replaced)
|
||
* return : status (1:keywords replaced, 0:no valid keyword in the path,
|
||
* -1:no valid time)
|
||
* notes : the following keywords in path are replaced by date, time and name
|
||
* %Y -> yyyy : year (4 digits) (1900-2099)
|
||
* %y -> yy : year (2 digits) (00-99)
|
||
* %m -> mm : month (01-12)
|
||
* %d -> dd : day of month (01-31)
|
||
* %h -> hh : hours (00-23)
|
||
* %M -> mm : minutes (00-59)
|
||
* %S -> ss : seconds (00-59)
|
||
* %n -> ddd : day of year (001-366)
|
||
* %W -> wwww : gps week (0001-9999)
|
||
* %D -> d : day of gps week (0-6)
|
||
* %H -> h : hour code (a=0,b=1,c=2,...,x=23)
|
||
* %ha-> hh : 3 hours (00,03,06,...,21)
|
||
* %hb-> hh : 6 hours (00,06,12,18)
|
||
* %hc-> hh : 12 hours (00,12)
|
||
* %t -> mm : 15 minutes (00,15,30,45)
|
||
* %r -> rrrr : rover id
|
||
* %b -> bbbb : base station id
|
||
*-----------------------------------------------------------------------------*/
|
||
extern int reppath(const char *path, char *rpath, gtime_t time, const char *rov,
|
||
const char *base)
|
||
{
|
||
double ep[6], ep0[6] = {2000, 1, 1, 0, 0, 0};
|
||
int week, dow, doy, stat = 0;
|
||
char rep[64];
|
||
|
||
strcpy(rpath, path);
|
||
|
||
if (!strstr(rpath, "%"))
|
||
return 0;
|
||
if (*rov)
|
||
stat |= repstr(rpath, "%r", rov);
|
||
if (*base)
|
||
stat |= repstr(rpath, "%b", base);
|
||
if (time.time != 0)
|
||
{
|
||
time2epoch(time, ep);
|
||
ep0[0] = ep[0];
|
||
dow = (int)floor(time2gpst(time, &week) / 86400.0);
|
||
doy = (int)floor(timediff(time, epoch2time(ep0)) / 86400.0) + 1;
|
||
sprintf(rep, "%02d", ((int)ep[3] / 3) * 3);
|
||
stat |= repstr(rpath, "%ha", rep);
|
||
sprintf(rep, "%02d", ((int)ep[3] / 6) * 6);
|
||
stat |= repstr(rpath, "%hb", rep);
|
||
sprintf(rep, "%02d", ((int)ep[3] / 12) * 12);
|
||
stat |= repstr(rpath, "%hc", rep);
|
||
sprintf(rep, "%04.0f", ep[0]);
|
||
stat |= repstr(rpath, "%Y", rep);
|
||
sprintf(rep, "%02.0f", fmod(ep[0], 100.0));
|
||
stat |= repstr(rpath, "%y", rep);
|
||
sprintf(rep, "%02.0f", ep[1]);
|
||
stat |= repstr(rpath, "%m", rep);
|
||
sprintf(rep, "%02.0f", ep[2]);
|
||
stat |= repstr(rpath, "%d", rep);
|
||
sprintf(rep, "%02.0f", ep[3]);
|
||
stat |= repstr(rpath, "%h", rep);
|
||
sprintf(rep, "%02.0f", ep[4]);
|
||
stat |= repstr(rpath, "%M", rep);
|
||
sprintf(rep, "%02.0f", floor(ep[5]));
|
||
stat |= repstr(rpath, "%S", rep);
|
||
sprintf(rep, "%03d", doy);
|
||
stat |= repstr(rpath, "%n", rep);
|
||
sprintf(rep, "%04d", week);
|
||
stat |= repstr(rpath, "%W", rep);
|
||
sprintf(rep, "%d", dow);
|
||
stat |= repstr(rpath, "%D", rep);
|
||
sprintf(rep, "%c", 'a' + (int)ep[3]);
|
||
stat |= repstr(rpath, "%H", rep);
|
||
sprintf(rep, "%02d", ((int)ep[4] / 15) * 15);
|
||
stat |= repstr(rpath, "%t", rep);
|
||
}
|
||
else if (strstr(rpath, "%ha") || strstr(rpath, "%hb") || strstr(rpath, "%hc") ||
|
||
strstr(rpath, "%Y") || strstr(rpath, "%y") || strstr(rpath, "%m") ||
|
||
strstr(rpath, "%d") || strstr(rpath, "%h") || strstr(rpath, "%M") ||
|
||
strstr(rpath, "%S") || strstr(rpath, "%n") || strstr(rpath, "%W") ||
|
||
strstr(rpath, "%D") || strstr(rpath, "%H") || strstr(rpath, "%t"))
|
||
{
|
||
return -1; /* no valid time */
|
||
}
|
||
return stat;
|
||
}
|
||
/* replace keywords in file path and generate multiple paths -------------------
|
||
* replace keywords in file path with date, time, rover and base station id
|
||
* generate multiple keywords-replaced paths
|
||
* args : char *path I file path (see below)
|
||
* char *rpath[] O file paths in which keywords replaced
|
||
* int nmax I max number of output file paths
|
||
* gtime_t ts I time start (gpst)
|
||
* gtime_t te I time end (gpst)
|
||
* char *rov I rover id string ("": not replaced)
|
||
* char *base I base station id string ("": not replaced)
|
||
* return : number of replaced file paths
|
||
* notes : see reppath() for replacements of keywords.
|
||
* minimum interval of time replaced is 900s.
|
||
*-----------------------------------------------------------------------------*/
|
||
extern int reppaths(const char *path, char *rpath[], int nmax, gtime_t ts,
|
||
gtime_t te, const char *rov, const char *base)
|
||
{
|
||
gtime_t time;
|
||
double tow, tint = 86400.0;
|
||
int i, n = 0, week;
|
||
|
||
trace(3, "reppaths: path =%s nmax=%d rov=%s base=%s\n", path, nmax, rov, base);
|
||
|
||
if (ts.time == 0 || te.time == 0 || timediff(ts, te) > 0.0)
|
||
return 0;
|
||
|
||
if (strstr(path, "%S") || strstr(path, "%M") || strstr(path, "%t"))
|
||
tint = 900.0;
|
||
else if (strstr(path, "%h") || strstr(path, "%H"))
|
||
tint = 3600.0;
|
||
|
||
tow = time2gpst(ts, &week);
|
||
time = gpst2time(week, floor(tow / tint) * tint);
|
||
|
||
while (timediff(time, te) <= 0.0 && n < nmax)
|
||
{
|
||
reppath(path, rpath[n], time, rov, base);
|
||
if (n == 0 || strcmp(rpath[n], rpath[n - 1]))
|
||
n++;
|
||
time = timeadd(time, tint);
|
||
}
|
||
for (i = 0; i < n; i++)
|
||
trace(3, "reppaths: rpath=%s\n", rpath[i]);
|
||
return n;
|
||
}
|
||
/* geometric distance ----------------------------------------------------------
|
||
* compute geometric distance and receiver-to-satellite unit vector
|
||
* args : double *rs I satellilte position (ecef at transmission) (m)
|
||
* double *rr I receiver position (ecef at reception) (m)
|
||
* double *e O line-of-sight vector (ecef)
|
||
* return : geometric distance (m) (0>:error/no satellite position)
|
||
* notes : distance includes sagnac effect correction
|
||
*-----------------------------------------------------------------------------*/
|
||
extern double geodist(const double *rs, const double *rr, double *e)
|
||
{
|
||
double r;
|
||
int i;
|
||
|
||
if (norm(rs, 3) < RE_WGS84)
|
||
return -1.0;
|
||
for (i = 0; i < 3; i++)
|
||
e[i] = rs[i] - rr[i];
|
||
r = norm(e, 3);
|
||
for (i = 0; i < 3; i++)
|
||
e[i] /= r;
|
||
return r + OMGE * (rs[0] * rr[1] - rs[1] * rr[0]) / CLIGHT;
|
||
}
|
||
/* satellite azimuth/elevation angle -------------------------------------------
|
||
* compute satellite azimuth/elevation angle
|
||
* args : double *pos I geodetic position {lat,lon,h} (rad,m)
|
||
* double *e I receiver-to-satellilte unit vevtor (ecef)
|
||
* double *azel IO azimuth/elevation {az,el} (rad) (NULL: no output)
|
||
* (0.0<=azel[0]<2*pi,-pi/2<=azel[1]<=pi/2)
|
||
* return : elevation angle (rad)
|
||
*-----------------------------------------------------------------------------*/
|
||
extern double satazel(const double *pos, const double *e, double *azel)
|
||
{
|
||
double az = 0.0, el = PI / 2.0, enu[3];
|
||
|
||
if (pos[2] > -RE_WGS84)
|
||
{
|
||
ecef2enu(pos, e, enu);
|
||
az = dot(enu, enu, 2) < 1E-12 ? 0.0 : atan2(enu[0], enu[1]);
|
||
if (az < 0.0)
|
||
az += 2 * PI;
|
||
el = asin(enu[2]);
|
||
}
|
||
if (azel)
|
||
{
|
||
azel[0] = az;
|
||
azel[1] = el;
|
||
}
|
||
return el;
|
||
}
|
||
/* compute dops ----------------------------------------------------------------
|
||
* compute DOP (dilution of precision)
|
||
* args : int ns I number of satellites
|
||
* double *azel I satellite azimuth/elevation angle (rad)
|
||
* double elmin I elevation cutoff angle (rad)
|
||
* double *dop O DOPs {GDOP,PDOP,HDOP,VDOP}
|
||
* return : none
|
||
* notes : dop[0]-[3] return 0 in case of dop computation error
|
||
*-----------------------------------------------------------------------------*/
|
||
#define SQRT(x) ((x) < 0.0 || (x) != (x) ? 0.0 : sqrt(x))
|
||
|
||
extern void dops(int ns, const double *azel, double elmin, double *dop)
|
||
{
|
||
double H[4 * MAXSAT], Q[16], cosel, sinel;
|
||
int i, n;
|
||
|
||
for (i = 0; i < 4; i++)
|
||
dop[i] = 0.0;
|
||
for (i = n = 0; i < ns && i < MAXSAT; i++)
|
||
{
|
||
if (azel[1 + i * 2] < elmin || azel[1 + i * 2] <= 0.0)
|
||
continue;
|
||
cosel = cos(azel[1 + i * 2]);
|
||
sinel = sin(azel[1 + i * 2]);
|
||
H[4 * n] = cosel * sin(azel[i * 2]);
|
||
H[1 + 4 * n] = cosel * cos(azel[i * 2]);
|
||
H[2 + 4 * n] = sinel;
|
||
H[3 + 4 * n++] = 1.0;
|
||
}
|
||
if (n < 4)
|
||
return;
|
||
|
||
matmul("NT", 4, 4, n, 1.0, H, H, 0.0, Q);
|
||
if (!matinv(Q, 4))
|
||
{
|
||
dop[0] = SQRT(Q[0] + Q[5] + Q[10] + Q[15]); /* GDOP */
|
||
dop[1] = SQRT(Q[0] + Q[5] + Q[10]); /* PDOP */
|
||
dop[2] = SQRT(Q[0] + Q[5]); /* HDOP */
|
||
dop[3] = SQRT(Q[10]); /* VDOP */
|
||
}
|
||
}
|
||
/* ionosphere model ------------------------------------------------------------
|
||
* compute ionospheric delay by broadcast ionosphere model (klobuchar model)
|
||
* args : gtime_t t I time (gpst)
|
||
* double *ion I iono model parameters {a0,a1,a2,a3,b0,b1,b2,b3}
|
||
* double *pos I receiver position {lat,lon,h} (rad,m)
|
||
* double *azel I azimuth/elevation angle {az,el} (rad)
|
||
* return : ionospheric delay (L1) (m)
|
||
*-----------------------------------------------------------------------------*/
|
||
extern double ionmodel(gtime_t t, const double *ion, const double *pos,
|
||
const double *azel)
|
||
{
|
||
const double ion_default[] = {/* 2004/1/1 */
|
||
0.1118E-07, -0.7451E-08, -0.5961E-07, 0.1192E-06,
|
||
0.1167E+06, -0.2294E+06, -0.1311E+06, 0.1049E+07};
|
||
double tt, f, psi, phi, lam, amp, per, x;
|
||
int week;
|
||
|
||
if (pos[2] < -1E3 || azel[1] <= 0)
|
||
return 0.0;
|
||
if (norm(ion, 8) <= 0.0)
|
||
ion = ion_default;
|
||
|
||
/* earth centered angle (semi-circle) */
|
||
psi = 0.0137 / (azel[1] / PI + 0.11) - 0.022;
|
||
|
||
/* subionospheric latitude/longitude (semi-circle) */
|
||
phi = pos[0] / PI + psi * cos(azel[0]);
|
||
if (phi > 0.416)
|
||
phi = 0.416;
|
||
else if (phi < -0.416)
|
||
phi = -0.416;
|
||
lam = pos[1] / PI + psi * sin(azel[0]) / cos(phi * PI);
|
||
|
||
/* geomagnetic latitude (semi-circle) */
|
||
phi += 0.064 * cos((lam - 1.617) * PI);
|
||
|
||
/* local time (s) */
|
||
tt = 43200.0 * lam + time2gpst(t, &week);
|
||
tt -= floor(tt / 86400.0) * 86400.0; /* 0<=tt<86400 */
|
||
|
||
/* slant factor */
|
||
f = 1.0 + 16.0 * pow(0.53 - azel[1] / PI, 3.0);
|
||
|
||
/* ionospheric delay */
|
||
amp = ion[0] + phi * (ion[1] + phi * (ion[2] + phi * ion[3]));
|
||
per = ion[4] + phi * (ion[5] + phi * (ion[6] + phi * ion[7]));
|
||
amp = amp < 0.0 ? 0.0 : amp;
|
||
per = per < 72000.0 ? 72000.0 : per;
|
||
x = 2.0 * PI * (tt - 50400.0) / per;
|
||
|
||
return CLIGHT * f * (fabs(x) < 1.57 ? 5E-9 + amp * (1.0 + x * x * (-0.5 + x * x / 24.0)) : 5E-9);
|
||
}
|
||
/* ionosphere mapping function -------------------------------------------------
|
||
* compute ionospheric delay mapping function by single layer model
|
||
* args : double *pos I receiver position {lat,lon,h} (rad,m)
|
||
* double *azel I azimuth/elevation angle {az,el} (rad)
|
||
* return : ionospheric mapping function
|
||
*-----------------------------------------------------------------------------*/
|
||
extern double ionmapf(const double *pos, const double *azel)
|
||
{
|
||
if (pos[2] >= HION)
|
||
return 1.0;
|
||
return 1.0 / cos(asin((RE_WGS84 + pos[2]) / (RE_WGS84 + HION) * sin(PI / 2.0 - azel[1])));
|
||
}
|
||
/* ionospheric pierce point position -------------------------------------------
|
||
* compute ionospheric pierce point (ipp) position and slant factor
|
||
* args : double *pos I receiver position {lat,lon,h} (rad,m)
|
||
* double *azel I azimuth/elevation angle {az,el} (rad)
|
||
* double re I earth radius (km)
|
||
* double hion I altitude of ionosphere (km)
|
||
* double *posp O pierce point position {lat,lon,h} (rad,m)
|
||
* return : slant factor
|
||
* notes : see ref [2], only valid on the earth surface
|
||
* fixing bug on ref [2] A.4.4.10.1 A-22,23
|
||
*-----------------------------------------------------------------------------*/
|
||
extern double ionppp(const double *pos, const double *azel, double re,
|
||
double hion, double *posp)
|
||
{
|
||
double cosaz, rp, ap, sinap, tanap;
|
||
|
||
rp = re / (re + hion) * cos(azel[1]);
|
||
ap = PI / 2.0 - azel[1] - asin(rp);
|
||
sinap = sin(ap);
|
||
tanap = tan(ap);
|
||
cosaz = cos(azel[0]);
|
||
posp[0] = asin(sin(pos[0]) * cos(ap) + cos(pos[0]) * sinap * cosaz);
|
||
|
||
if ((pos[0] > 70.0 * D2R && tanap * cosaz > tan(PI / 2.0 - pos[0])) ||
|
||
(pos[0] < -70.0 * D2R && -tanap * cosaz > tan(PI / 2.0 + pos[0])))
|
||
{
|
||
posp[1] = pos[1] + PI - asin(sinap * sin(azel[0]) / cos(posp[0]));
|
||
}
|
||
else
|
||
{
|
||
posp[1] = pos[1] + asin(sinap * sin(azel[0]) / cos(posp[0]));
|
||
}
|
||
return 1.0 / sqrt(1.0 - rp * rp);
|
||
}
|
||
/* troposphere model -----------------------------------------------------------
|
||
* compute tropospheric delay by standard atmosphere and saastamoinen model
|
||
* args : gtime_t time I time
|
||
* double *pos I receiver position {lat,lon,h} (rad,m)
|
||
* double *azel I azimuth/elevation angle {az,el} (rad)
|
||
* double humi I relative humidity
|
||
* return : tropospheric delay (m)
|
||
*-----------------------------------------------------------------------------*/
|
||
extern double tropmodel(gtime_t time, const double *pos, const double *azel,
|
||
double humi)
|
||
{
|
||
const double temp0 = 15.0; /* temparature at sea level */
|
||
double hgt, pres, temp, e, z, trph, trpw;
|
||
|
||
if (pos[2] < -100.0 || 1E4 < pos[2] || azel[1] <= 0)
|
||
return 0.0;
|
||
|
||
/* standard atmosphere */
|
||
hgt = pos[2] < 0.0 ? 0.0 : pos[2];
|
||
|
||
pres = 1013.25 * pow(1.0 - 2.2557E-5 * hgt, 5.2568);
|
||
temp = temp0 - 6.5E-3 * hgt + 273.16;
|
||
e = 6.108 * humi * exp((17.15 * temp - 4684.0) / (temp - 38.45));
|
||
|
||
/* saastamoninen model */
|
||
z = PI / 2.0 - azel[1];
|
||
trph = 0.0022768 * pres / (1.0 - 0.00266 * cos(2.0 * pos[0]) - 0.00028 * hgt / 1E3) / cos(z);
|
||
trpw = 0.002277 * (1255.0 / temp + 0.05) * e / cos(z);
|
||
return trph + trpw;
|
||
}
|
||
#ifndef IERS_MODEL
|
||
|
||
static double interpc(const double coef[], double lat)
|
||
{
|
||
int i = (int)(lat / 15.0);
|
||
if (i < 1)
|
||
return coef[0];
|
||
else if (i > 4)
|
||
return coef[4];
|
||
return coef[i - 1] * (1.0 - lat / 15.0 + i) + coef[i] * (lat / 15.0 - i);
|
||
}
|
||
static double mapf(double el, double a, double b, double c)
|
||
{
|
||
double sinel = sin(el);
|
||
return (1.0 + a / (1.0 + b / (1.0 + c))) / (sinel + (a / (sinel + b / (sinel + c))));
|
||
}
|
||
static double nmf(gtime_t time, const double pos[], const double azel[],
|
||
double *mapfw)
|
||
{
|
||
/* ref [5] table 3 */
|
||
/* hydro-ave-a,b,c, hydro-amp-a,b,c, wet-a,b,c at latitude 15,30,45,60,75 */
|
||
const double coef[][5] = {
|
||
{1.2769934E-3, 1.2683230E-3, 1.2465397E-3, 1.2196049E-3, 1.2045996E-3},
|
||
{2.9153695E-3, 2.9152299E-3, 2.9288445E-3, 2.9022565E-3, 2.9024912E-3},
|
||
{62.610505E-3, 62.837393E-3, 63.721774E-3, 63.824265E-3, 64.258455E-3},
|
||
|
||
{0.0000000E-0, 1.2709626E-5, 2.6523662E-5, 3.4000452E-5, 4.1202191E-5},
|
||
{0.0000000E-0, 2.1414979E-5, 3.0160779E-5, 7.2562722E-5, 11.723375E-5},
|
||
{0.0000000E-0, 9.0128400E-5, 4.3497037E-5, 84.795348E-5, 170.37206E-5},
|
||
|
||
{5.8021897E-4, 5.6794847E-4, 5.8118019E-4, 5.9727542E-4, 6.1641693E-4},
|
||
{1.4275268E-3, 1.5138625E-3, 1.4572752E-3, 1.5007428E-3, 1.7599082E-3},
|
||
{4.3472961E-2, 4.6729510E-2, 4.3908931E-2, 4.4626982E-2, 5.4736038E-2}};
|
||
const double aht[] = {2.53E-5, 5.49E-3, 1.14E-3}; /* height correction */
|
||
|
||
double y, cosy, ah[3], aw[3], dm, el = azel[1], lat = pos[0] * R2D, hgt = pos[2];
|
||
int i;
|
||
|
||
if (el <= 0.0)
|
||
{
|
||
if (mapfw)
|
||
*mapfw = 0.0;
|
||
return 0.0;
|
||
}
|
||
/* year from doy 28, added half a year for southern latitudes */
|
||
y = (time2doy(time) - 28.0) / 365.25 + (lat < 0.0 ? 0.5 : 0.0);
|
||
|
||
cosy = cos(2.0 * PI * y);
|
||
lat = fabs(lat);
|
||
|
||
for (i = 0; i < 3; i++)
|
||
{
|
||
ah[i] = interpc(coef[i], lat) - interpc(coef[i + 3], lat) * cosy;
|
||
aw[i] = interpc(coef[i + 6], lat);
|
||
}
|
||
/* ellipsoidal height is used instead of height above sea level */
|
||
dm = (1.0 / sin(el) - mapf(el, aht[0], aht[1], aht[2])) * hgt / 1E3;
|
||
|
||
if (mapfw)
|
||
*mapfw = mapf(el, aw[0], aw[1], aw[2]);
|
||
|
||
return mapf(el, ah[0], ah[1], ah[2]) + dm;
|
||
}
|
||
#endif /* !IERS_MODEL */
|
||
|
||
/* troposphere mapping function ------------------------------------------------
|
||
* compute tropospheric mapping function by NMF
|
||
* args : gtime_t t I time
|
||
* double *pos I receiver position {lat,lon,h} (rad,m)
|
||
* double *azel I azimuth/elevation angle {az,el} (rad)
|
||
* double *mapfw IO wet mapping function (NULL: not output)
|
||
* return : dry mapping function
|
||
* note : see ref [5] (NMF) and [9] (GMF)
|
||
* original JGR paper of [5] has bugs in eq.(4) and (5). the corrected
|
||
* paper is obtained from:
|
||
* ftp://web.haystack.edu/pub/aen/nmf/NMF_JGR.pdf
|
||
*-----------------------------------------------------------------------------*/
|
||
extern double tropmapf(gtime_t time, const double pos[], const double azel[],
|
||
double *mapfw)
|
||
{
|
||
#ifdef IERS_MODEL
|
||
const double ep[] = {2000, 1, 1, 12, 0, 0};
|
||
double mjd, lat, lon, hgt, zd, gmfh, gmfw;
|
||
#endif
|
||
trace(4, "tropmapf: pos=%10.6f %11.6f %6.1f azel=%5.1f %4.1f\n",
|
||
pos[0] * R2D, pos[1] * R2D, pos[2], azel[0] * R2D, azel[1] * R2D);
|
||
|
||
if (pos[2] < -1000.0 || pos[2] > 20000.0)
|
||
{
|
||
if (mapfw)
|
||
*mapfw = 0.0;
|
||
return 0.0;
|
||
}
|
||
#ifdef IERS_MODEL
|
||
mjd = 51544.5 + (timediff(time, epoch2time(ep))) / 86400.0;
|
||
lat = pos[0];
|
||
lon = pos[1];
|
||
hgt = pos[2] - geoidh(pos); /* height in m (mean sea level) */
|
||
zd = PI / 2.0 - azel[1];
|
||
|
||
/* call GMF */
|
||
gmf_(&mjd, &lat, &lon, &hgt, &zd, &gmfh, &gmfw);
|
||
|
||
if (mapfw)
|
||
*mapfw = gmfw;
|
||
return gmfh;
|
||
#else
|
||
return nmf(time, pos, azel, mapfw); /* NMF */
|
||
#endif
|
||
}
|
||
/* interpolate antenna phase center variation --------------------------------*/
|
||
static double interpvar(double ang, const double *var)
|
||
{
|
||
double a = ang / 5.0; /* ang=0-90 */
|
||
int i = (int)a;
|
||
if (i < 0)
|
||
return var[0];
|
||
else if (i >= 18)
|
||
return var[18];
|
||
return var[i] * (1.0 - a + i) + var[i + 1] * (a - i);
|
||
}
|
||
/* receiver antenna model ------------------------------------------------------
|
||
* compute antenna offset by antenna phase center parameters
|
||
* args : pcv_t *pcv I antenna phase center parameters
|
||
* double *del I antenna delta {e,n,u} (m)
|
||
* double *azel I azimuth/elevation for receiver {az,el} (rad)
|
||
* int opt I option (0:only offset,1:offset+pcv)
|
||
* double *dant O range offsets for each frequency (m)
|
||
* return : none
|
||
* notes : current version does not support azimuth dependent terms
|
||
*-----------------------------------------------------------------------------*/
|
||
// extern void antmodel(const pcv_t *pcv, const double *del, const double *azel,
|
||
// int opt, double *dant)
|
||
//{
|
||
// double e[3],off[3],cosel=cos(azel[1]);
|
||
// int i,j;
|
||
//
|
||
// trace(4,"antmodel: azel=%6.1f %4.1f opt=%d\n",azel[0]*R2D,azel[1]*R2D,opt);
|
||
//
|
||
// e[0]=sin(azel[0])*cosel;
|
||
// e[1]=cos(azel[0])*cosel;
|
||
// e[2]=sin(azel[1]);
|
||
//
|
||
// for (i=0;i<NFREQ;i++) {
|
||
// for (j=0;j<3;j++) off[j]=pcv->off[i][j]+del[j];
|
||
//
|
||
// dant[i]=-dot(off,e,3)+(opt?interpvar(90.0-azel[1]*R2D,pcv->var[i]):0.0);
|
||
// }
|
||
// trace(2,"antmodel: dant=%6.3f %6.3f\n",dant[0],dant[1]);
|
||
// }
|
||
/* satellite antenna model ------------------------------------------------------
|
||
* compute satellite antenna phase center parameters
|
||
* args : pcv_t *pcv I antenna phase center parameters
|
||
* double nadir I nadir angle for satellite (rad)
|
||
* double *dant O range offsets for each frequency (m)
|
||
* return : none
|
||
*-----------------------------------------------------------------------------*/
|
||
// extern void antmodel_s(const pcv_t *pcv, double nadir, double *dant)
|
||
//{
|
||
// int i;
|
||
//
|
||
// trace(4,"antmodel_s: nadir=%6.1f\n",nadir*R2D);
|
||
//
|
||
// for (i=0;i<NFREQ;i++) {
|
||
// dant[i]=interpvar(nadir*R2D*5.0,pcv->var[i]);
|
||
// }
|
||
// trace(4,"antmodel_s: dant=%6.3f %6.3f\n",dant[0],dant[1]);
|
||
// }
|
||
/* sun and moon position in eci (ref [4] 5.1.1, 5.2.1) -----------------------*/
|
||
static void sunmoonpos_eci(gtime_t tut, double *rsun, double *rmoon)
|
||
{
|
||
const double ep2000[] = {2000, 1, 1, 12, 0, 0};
|
||
double t, f[5], eps, Ms, ls, rs, lm, pm, rm, sine, cose, sinp, cosp, sinl, cosl;
|
||
|
||
trace(4, "sunmoonpos_eci: tut=%s\n", time_str(tut, 3));
|
||
|
||
t = timediff(tut, epoch2time(ep2000)) / 86400.0 / 36525.0;
|
||
|
||
/* astronomical arguments */
|
||
ast_args(t, f);
|
||
|
||
/* obliquity of the ecliptic */
|
||
eps = 23.439291 - 0.0130042 * t;
|
||
sine = sin(eps * D2R);
|
||
cose = cos(eps * D2R);
|
||
|
||
/* sun position in eci */
|
||
if (rsun)
|
||
{
|
||
Ms = 357.5277233 + 35999.05034 * t;
|
||
ls = 280.460 + 36000.770 * t + 1.914666471 * sin(Ms * D2R) + 0.019994643 * sin(2.0 * Ms * D2R);
|
||
rs = AU * (1.000140612 - 0.016708617 * cos(Ms * D2R) - 0.000139589 * cos(2.0 * Ms * D2R));
|
||
sinl = sin(ls * D2R);
|
||
cosl = cos(ls * D2R);
|
||
rsun[0] = rs * cosl;
|
||
rsun[1] = rs * cose * sinl;
|
||
rsun[2] = rs * sine * sinl;
|
||
|
||
trace(5, "rsun =%.3f %.3f %.3f\n", rsun[0], rsun[1], rsun[2]);
|
||
}
|
||
/* moon position in eci */
|
||
if (rmoon)
|
||
{
|
||
lm = 218.32 + 481267.883 * t + 6.29 * sin(f[0]) - 1.27 * sin(f[0] - 2.0 * f[3]) +
|
||
0.66 * sin(2.0 * f[3]) + 0.21 * sin(2.0 * f[0]) - 0.19 * sin(f[1]) - 0.11 * sin(2.0 * f[2]);
|
||
pm = 5.13 * sin(f[2]) + 0.28 * sin(f[0] + f[2]) - 0.28 * sin(f[2] - f[0]) -
|
||
0.17 * sin(f[2] - 2.0 * f[3]);
|
||
rm = RE_WGS84 / sin((0.9508 + 0.0518 * cos(f[0]) + 0.0095 * cos(f[0] - 2.0 * f[3]) +
|
||
0.0078 * cos(2.0 * f[3]) + 0.0028 * cos(2.0 * f[0])) *
|
||
D2R);
|
||
sinl = sin(lm * D2R);
|
||
cosl = cos(lm * D2R);
|
||
sinp = sin(pm * D2R);
|
||
cosp = cos(pm * D2R);
|
||
rmoon[0] = rm * cosp * cosl;
|
||
rmoon[1] = rm * (cose * cosp * sinl - sine * sinp);
|
||
rmoon[2] = rm * (sine * cosp * sinl + cose * sinp);
|
||
|
||
trace(5, "rmoon=%.3f %.3f %.3f\n", rmoon[0], rmoon[1], rmoon[2]);
|
||
}
|
||
}
|
||
/* sun and moon position -------------------------------------------------------
|
||
* get sun and moon position in ecef
|
||
* args : gtime_t tut I time in ut1
|
||
* double *erpv I erp value {xp,yp,ut1_utc,lod} (rad,rad,s,s/d)
|
||
* double *rsun IO sun position in ecef (m) (NULL: not output)
|
||
* double *rmoon IO moon position in ecef (m) (NULL: not output)
|
||
* double *gmst O gmst (rad)
|
||
* return : none
|
||
*-----------------------------------------------------------------------------*/
|
||
extern void sunmoonpos(gtime_t tutc, const double *erpv, double *rsun,
|
||
double *rmoon, double *gmst)
|
||
{
|
||
gtime_t tut;
|
||
double rs[3], rm[3], U[9], gmst_;
|
||
|
||
trace(4, "sunmoonpos: tutc=%s\n", time_str(tutc, 3));
|
||
|
||
tut = timeadd(tutc, erpv[2]); /* utc -> ut1 */
|
||
|
||
/* sun and moon position in eci */
|
||
sunmoonpos_eci(tut, rsun ? rs : NULL, rmoon ? rm : NULL);
|
||
|
||
/* eci to ecef transformation matrix */
|
||
eci2ecef(tutc, erpv, U, &gmst_);
|
||
|
||
/* sun and moon postion in ecef */
|
||
if (rsun)
|
||
matmul("NN", 3, 1, 3, 1.0, U, rs, 0.0, rsun);
|
||
if (rmoon)
|
||
matmul("NN", 3, 1, 3, 1.0, U, rm, 0.0, rmoon);
|
||
if (gmst)
|
||
*gmst = gmst_;
|
||
}
|
||
/* uncompress file -------------------------------------------------------------
|
||
* uncompress (uncompress/unzip/uncompact hatanaka-compression/tar) file
|
||
* args : char *file I input file
|
||
* char *uncfile O uncompressed file
|
||
* return : status (-1:error,0:not compressed file,1:uncompress completed)
|
||
* note : creates uncompressed file in tempolary directory
|
||
* gzip, tar and crx2rnx commands have to be installed in commands path
|
||
*-----------------------------------------------------------------------------*/
|
||
extern int rtk_uncompress(const char *file, char *uncfile)
|
||
{
|
||
int stat = 0;
|
||
char *p, cmd[64 + 2048] = "", tmpfile[1024] = "", buff[1024], *fname, *dir = "";
|
||
|
||
trace(3, "rtk_uncompress: file=%s\n", file);
|
||
|
||
strcpy(tmpfile, file);
|
||
if (!(p = strrchr(tmpfile, '.')))
|
||
return 0;
|
||
|
||
/* uncompress by gzip */
|
||
if (!strcmp(p, ".z") || !strcmp(p, ".Z") ||
|
||
!strcmp(p, ".gz") || !strcmp(p, ".GZ") ||
|
||
!strcmp(p, ".zip") || !strcmp(p, ".ZIP"))
|
||
{
|
||
|
||
strcpy(uncfile, tmpfile);
|
||
uncfile[p - tmpfile] = '\0';
|
||
sprintf(cmd, "gzip -f -d -c \"%s\" > \"%s\"", tmpfile, uncfile);
|
||
|
||
if (execcmd(cmd))
|
||
{
|
||
remove(uncfile);
|
||
return -1;
|
||
}
|
||
strcpy(tmpfile, uncfile);
|
||
stat = 1;
|
||
}
|
||
/* extract tar file */
|
||
if ((p = strrchr(tmpfile, '.')) && !strcmp(p, ".tar"))
|
||
{
|
||
|
||
strcpy(uncfile, tmpfile);
|
||
uncfile[p - tmpfile] = '\0';
|
||
strcpy(buff, tmpfile);
|
||
fname = buff;
|
||
#ifdef WIN32
|
||
if ((p = strrchr(buff, '\\')))
|
||
{
|
||
*p = '\0';
|
||
dir = fname;
|
||
fname = p + 1;
|
||
}
|
||
sprintf(cmd, "set PATH=%%CD%%;%%PATH%% & cd /D \"%s\" & tar -xf \"%s\"",
|
||
dir, fname);
|
||
#else
|
||
if ((p = strrchr(buff, '/')))
|
||
{
|
||
*p = '\0';
|
||
dir = fname;
|
||
fname = p + 1;
|
||
}
|
||
sprintf(cmd, "tar -C \"%s\" -xf \"%s\"", dir, tmpfile);
|
||
#endif
|
||
if (execcmd(cmd))
|
||
{
|
||
if (stat)
|
||
remove(tmpfile);
|
||
return -1;
|
||
}
|
||
if (stat)
|
||
remove(tmpfile);
|
||
stat = 1;
|
||
}
|
||
/* extract hatanaka-compressed file by cnx2rnx */
|
||
else if ((p = strrchr(tmpfile, '.')) &&
|
||
((strlen(p) > 3 && (*(p + 3) == 'd' || *(p + 3) == 'D')) ||
|
||
!strcmp(p, ".crx") || !strcmp(p, ".CRX")))
|
||
{
|
||
|
||
strcpy(uncfile, tmpfile);
|
||
uncfile[p - tmpfile + 3] = *(p + 3) == 'D' ? 'O' : 'o';
|
||
sprintf(cmd, "crx2rnx < \"%s\" > \"%s\"", tmpfile, uncfile);
|
||
|
||
if (execcmd(cmd))
|
||
{
|
||
remove(uncfile);
|
||
if (stat)
|
||
remove(tmpfile);
|
||
return -1;
|
||
}
|
||
if (stat)
|
||
remove(tmpfile);
|
||
stat = 1;
|
||
}
|
||
trace(3, "rtk_uncompress: stat=%d\n", stat);
|
||
return stat;
|
||
}
|
||
/* dummy application functions for shared library ----------------------------*/
|
||
#ifdef WIN_DLL
|
||
extern int showmsg(char *format, ...)
|
||
{
|
||
return 0;
|
||
}
|
||
extern void settspan(gtime_t ts, gtime_t te) {}
|
||
extern void settime(gtime_t time) {}
|
||
#endif
|