RTK_base/RTK/rtkcmn.c

4495 lines
163 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*------------------------------------------------------------------------------
* rtkcmn.c : rtklib common functions
*
* Copyright (C) 2007-2020 by T.TAKASU, All rights reserved.
*
* options : -DLAPACK use LAPACK/BLAS
* -DMKL use Intel MKL
* -DTRACE enable debug trace
* -DWIN32 use WIN32 API
* -DNOCALLOC no use calloc for zero matrix
* -DIERS_MODEL use GMF instead of NMF
* -DDLL built for shared library
* -DCPUTIME_IN_GPST cputime operated in gpst
*
* references :
* [1] IS-GPS-200D, Navstar GPS Space Segment/Navigation User Interfaces,
* 7 March, 2006
* [2] RTCA/DO-229C, Minimum operational performance standards for global
* positioning system/wide area augmentation system airborne equipment,
* November 28, 2001
* [3] M.Rothacher, R.Schmid, ANTEX: The Antenna Exchange Format Version 1.4,
* 15 September, 2010
* [4] A.Gelb ed., Applied Optimal Estimation, The M.I.T Press, 1974
* [5] A.E.Niell, Global mapping functions for the atmosphere delay at radio
* wavelengths, Jounal of geophysical research, 1996
* [6] W.Gurtner and L.Estey, RINEX The Receiver Independent Exchange Format
* Version 3.00, November 28, 2007
* [7] J.Kouba, A Guide to using International GNSS Service (IGS) products,
* May 2009
* [8] China Satellite Navigation Office, BeiDou navigation satellite system
* signal in space interface control document, open service signal B1I
* (version 1.0), Dec 2012
* [9] J.Boehm, A.Niell, P.Tregoning and H.Shuh, Global Mapping Function
* (GMF): A new empirical mapping function base on numerical weather
* model data, Geophysical Research Letters, 33, L07304, 2006
* [10] GLONASS/GPS/Galileo/Compass/SBAS NV08C receiver series BINR interface
* protocol specification ver.1.3, August, 2012
*
* version : $Revision: 1.1 $ $Date: 2008/07/17 21:48:06 $
* history : 2007/01/12 1.0 new
* 2007/03/06 1.1 input initial rover pos of pntpos()
* update only effective states of filter()
* fix bug of atan2() domain error
* 2007/04/11 1.2 add function antmodel()
* add gdop mask for pntpos()
* change constant MAXDTOE value
* 2007/05/25 1.3 add function execcmd(),expandpath()
* 2008/06/21 1.4 add funciton sortobs(),uniqeph(),screent()
* replace geodist() by sagnac correction way
* 2008/10/29 1.5 fix bug of ionosphereic mapping function
* fix bug of seasonal variation term of tropmapf
* 2008/12/27 1.6 add function tickget(), sleepms(), tracenav(),
* xyz2enu(), satposv(), pntvel(), covecef()
* 2009/03/12 1.7 fix bug on error-stop when localtime() returns NULL
* 2009/03/13 1.8 fix bug on time adjustment for summer time
* 2009/04/10 1.9 add function adjgpsweek(),getbits(),getbitu()
* add function geph2pos()
* 2009/06/08 1.10 add function seph2pos()
* 2009/11/28 1.11 change function pntpos()
* add function tracegnav(),tracepeph()
* 2009/12/22 1.12 change default parameter of ionos std
* valid under second for timeget()
* 2010/07/28 1.13 fix bug in tropmapf()
* added api:
* obs2code(),code2obs(),cross3(),normv3(),
* gst2time(),time2gst(),time_str(),timeset(),
* deg2dms(),dms2deg(),searchpcv(),antmodel_s(),
* tracehnav(),tracepclk(),reppath(),reppaths(),
* createdir()
* changed api:
* readpcv(),
* deleted api:
* uniqeph()
* 2010/08/20 1.14 omit to include mkl header files
* fix bug on chi-sqr(n) table
* 2010/12/11 1.15 added api:
* freeobs(),freenav(),ionppp()
* 2011/05/28 1.16 fix bug on half-hour offset by time2epoch()
* added api:
* uniqnav()
* 2012/06/09 1.17 add a leap second after 2012-6-30
* 2012/07/15 1.18 add api setbits(),setbitu(),utc2gmst()
* fix bug on interpolation of antenna pcv
* fix bug on str2num() for string with over 256 char
* add api readblq(),satexclude(),setcodepri(),
* getcodepri()
* change api obs2code(),code2obs(),antmodel()
* 2012/12/25 1.19 fix bug on satwavelen(),code2obs(),obs2code()
* add api testsnr()
* 2013/01/04 1.20 add api gpst2bdt(),bdt2gpst(),bdt2time(),time2bdt()
* readblq(),readerp(),geterp(),crc16()
* change api eci2ecef(),sunmoonpos()
* 2013/03/26 1.21 tickget() uses clock_gettime() for linux
* 2013/05/08 1.22 fix bug on nutation coefficients for ast_args()
* 2013/06/02 1.23 add #ifdef for undefined CLOCK_MONOTONIC_RAW
* 2013/09/01 1.24 fix bug on interpolation of satellite antenna pcv
* 2013/09/06 1.25 fix bug on extrapolation of erp
* 2014/04/27 1.26 add SYS_LEO for satellite system
* add BDS L1 code for RINEX 3.02 and RTCM 3.2
* support BDS L1 in satwavelen()
* 2014/05/29 1.27 fix bug on obs2code() to search obs code table
* 2014/08/26 1.28 fix problem on output of uncompress() for tar file
* add function to swap trace file with keywords
* 2014/10/21 1.29 strtok() -> strtok_r() in expath() for thread-safe
* add bdsmodear in procopt_default
* 2015/03/19 1.30 fix bug on interpolation of erp values in geterp()
* add leap second insertion before 2015/07/01 00:00
* add api read_leaps()
* 2015/05/31 1.31 delte api windupcorr()
* 2015/08/08 1.32 add compile option CPUTIME_IN_GPST
* add api add_fatal()
* support usno leapsec.dat for api read_leaps()
* 2016/01/23 1.33 enable septentrio
* 2016/02/05 1.34 support GLONASS for savenav(), loadnav()
* 2016/06/11 1.35 delete trace() in reppath() to avoid deadlock
* 2016/07/01 1.36 support IRNSS
* add leap second before 2017/1/1 00:00:00
* 2016/07/29 1.37 rename api compress() -> rtk_uncompress()
* rename api crc16() -> rtk_crc16()
* rename api crc24q() -> rtk_crc24q()
* rename api crc32() -> rtk_crc32()
* 2016/08/20 1.38 fix type incompatibility in win64 environment
* change constant _POSIX_C_SOURCE 199309 -> 199506
* 2016/08/21 1.39 fix bug on week overflow in time2gpst()/gpst2time()
* 2016/09/05 1.40 fix bug on invalid nav data read in readnav()
* 2016/09/17 1.41 suppress warnings
* 2016/09/19 1.42 modify api deg2dms() to consider numerical error
* 2017/04/11 1.43 delete EXPORT for global variables
* 2018/10/10 1.44 modify api satexclude()
* 2020/11/30 1.45 add API code2idx() to get freq-index
* add API code2freq() to get carrier frequency
* add API timereset() to reset current time
* modify API obs2code(), code2obs() and setcodepri()
* delete API satwavelen()
* delete API csmooth()
* delete global variable lam_carr[]
* compensate L3,L4,... PCVs by L2 PCV if no PCV data
* in input file by API readpcv()
* add support hatanaka-compressed RINEX files with
* extension ".crx" or ".CRX"
* update stream format strings table
* update obs code strings and priority table
* use integer types in stdint.h
* surppress warnings
*-----------------------------------------------------------------------------*/
#define _POSIX_C_SOURCE 199506
#include "rtklib.h"
#include <stdarg.h>
#include <ctype.h>
#include <errno.h>
/* constants -----------------------------------------------------------------*/
#define POLYCRC32 0xEDB88320u /* CRC32 polynomial */
#define POLYCRC24Q 0x1864CFBu /* CRC24Q polynomial */
#define SQR(x) ((x) * (x))
#define MAX_VAR_EPH SQR(300.0) /* max variance eph to reject satellite (m^2) */
static const double gpst0[] = {1980, 1, 6, 0, 0, 0}; /* gps time reference */
static const double gst0[] = {1999, 8, 22, 0, 0, 0}; /* galileo system time reference */
static const double bdt0[] = {2006, 1, 1, 0, 0, 0}; /* beidou time reference */
static double leaps[MAXLEAPS + 1][7] = {/* leap seconds (y,m,d,h,m,s,utc-gpst) */
{2017, 1, 1, 0, 0, 0, -18},
{2015, 7, 1, 0, 0, 0, -17},
{2012, 7, 1, 0, 0, 0, -16},
{2009, 1, 1, 0, 0, 0, -15},
{2006, 1, 1, 0, 0, 0, -14},
{1999, 1, 1, 0, 0, 0, -13},
{1997, 7, 1, 0, 0, 0, -12},
{1996, 1, 1, 0, 0, 0, -11},
{1994, 7, 1, 0, 0, 0, -10},
{1993, 7, 1, 0, 0, 0, -9},
{1992, 7, 1, 0, 0, 0, -8},
{1991, 1, 1, 0, 0, 0, -7},
{1990, 1, 1, 0, 0, 0, -6},
{1988, 1, 1, 0, 0, 0, -5},
{1985, 7, 1, 0, 0, 0, -4},
{1983, 7, 1, 0, 0, 0, -3},
{1982, 7, 1, 0, 0, 0, -2},
{1981, 7, 1, 0, 0, 0, -1},
{0}};
const double chisqr[100] = {/* chi-sqr(n) (alpha=0.001) */
10.8, 13.8, 16.3, 18.5, 20.5, 22.5, 24.3, 26.1, 27.9, 29.6,
31.3, 32.9, 34.5, 36.1, 37.7, 39.3, 40.8, 42.3, 43.8, 45.3,
46.8, 48.3, 49.7, 51.2, 52.6, 54.1, 55.5, 56.9, 58.3, 59.7,
61.1, 62.5, 63.9, 65.2, 66.6, 68.0, 69.3, 70.7, 72.1, 73.4,
74.7, 76.0, 77.3, 78.6, 80.0, 81.3, 82.6, 84.0, 85.4, 86.7,
88.0, 89.3, 90.6, 91.9, 93.3, 94.7, 96.0, 97.4, 98.7, 100,
101, 102, 103, 104, 105, 107, 108, 109, 110, 112,
113, 114, 115, 116, 118, 119, 120, 122, 123, 125,
126, 127, 128, 129, 131, 132, 133, 134, 135, 137,
138, 139, 140, 142, 143, 144, 145, 147, 148, 149};
const char *formatstrs[32] = { /* stream format strings */
"RTCM 2", /* 0 */
"RTCM 3", /* 1 */
"NovAtel OEM7", /* 2 */
"ComNav", /* 3 */
"u-blox UBX", /* 4 */
"Swift Navigation SBP", /* 5 */
"Hemisphere", /* 6 */
"SkyTraq", /* 7 */
"Javad GREIS", /* 8 */
"NVS BINR", /* 9 */
"BINEX", /* 10 */
"Trimble RT17", /* 11 */
"Septentrio SBF", /* 12 */
"Tersus", /* 13 */
"RINEX", /* 14 */
"SP3", /* 15 */
"RINEX CLK", /* 16 */
"SBAS", /* 17 */
"NMEA 0183", /* 18 */
"TERSUS", /* 19 */
NULL};
static char *obscodes[] = {
/* observation code strings */
"", "1C", "1P", "1W", "1Y", "1M", "1N", "1S", "1L", "1E", /* 0- 9 */
"1A", "1B", "1X", "1Z", "2C", "2D", "2S", "2L", "2X", "2P", /* 10-19 */
"2W", "2Y", "2M", "2N", "5I", "5Q", "5X", "7I", "7Q", "7X", /* 20-29 */
"6A", "6B", "6C", "6X", "6Z", "6S", "6L", "8L", "8Q", "8X", /* 30-39 */
"2I", "2Q", "6I", "6Q", "3I", "3Q", "3X", "1I", "1Q", "5A", /* 40-49 */
"5B", "5C", "9A", "9B", "9C", "9X", "1D", "5D", "5P", "5Z", /* 50-59 */
"6E", "7D", "7P", "7Z", "8D", "8P", "4A", "4B", "4X", "" /* 60-69 */
};
#ifdef L5_TO_L2
/*L1 + L5˫Ƶ<CBAB><C6B5><EFBFBD>ջ<EFBFBD> <20><><EFBFBD><EFBFBD>L5<4C><35><EFBFBD>ȼ<EFBFBD><C8BC><EFBFBD>L2ǰ<32><C7B0>*/
static char codepris[7][MAXFREQ][16] = {
/* code priority for each freq-index */
/* L1/E1/B1 L2/E5b/B2b L5/E5a/B2a E6/LEX/B3 E5(a+b) */
{"CPYWMNSL", "IQX", "CPYWMNDLSX", "", "", ""}, /* GPS */
{"CPABX", "IQX", "CPABX", "", "", ""}, /* GLO */
{"CABXZ", "XIQ", "XIQ", "ABCXZ", "IQX", ""}, /* GAL */
{"CLSXZ", "IQXDPZ", "LSX", "LSXEZ", "", ""}, /* QZS */
{"C", "IQX", "", "", "", ""}, /* SBS */
{"IQXDPAN", "DPX", "IQXDPZ", "IQXA", "DPX", ""}, /* BDS */
{"ABCX", "ABCX", "", "", "", ""} /* IRN */
};
#else
//ԭ<><D4AD><EFBFBD>ȼ<EFBFBD>
static char codepris[7][MAXFREQ][16] = {
/* code priority for each freq-index */
/* L1/E1/B1 L2/E5b/B2b L5/E5a/B2a E6/LEX/B3 E5(a+b) */
{"CPYWMNSL", "CPYWMNDLSX", "IQX", "", "", ""}, /* GPS */
{"CPABX", "CPABX", "IQX", "", "", ""}, /* GLO */
{"CABXZ", "XIQ", "XIQ", "ABCXZ", "IQX", ""}, /* GAL */
{"CLSXZ", "LSX", "IQXDPZ", "LSXEZ", "", ""}, /* QZS */
{"C", "IQX", "", "", "", ""}, /* SBS */
{"IQXDPAN", "IQXDPZ", "DPX", "IQXA", "DPX", ""}, /* BDS */
{"ABCX", "ABCX", "", "", "", ""} /* IRN */
};
#endif
static fatalfunc_t *fatalfunc = NULL; /* fatal callback function */
/* crc tables generated by util/gencrc ---------------------------------------*/
static const uint16_t tbl_CRC16[] = {
0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50A5, 0x60C6, 0x70E7,
0x8108, 0x9129, 0xA14A, 0xB16B, 0xC18C, 0xD1AD, 0xE1CE, 0xF1EF,
0x1231, 0x0210, 0x3273, 0x2252, 0x52B5, 0x4294, 0x72F7, 0x62D6,
0x9339, 0x8318, 0xB37B, 0xA35A, 0xD3BD, 0xC39C, 0xF3FF, 0xE3DE,
0x2462, 0x3443, 0x0420, 0x1401, 0x64E6, 0x74C7, 0x44A4, 0x5485,
0xA56A, 0xB54B, 0x8528, 0x9509, 0xE5EE, 0xF5CF, 0xC5AC, 0xD58D,
0x3653, 0x2672, 0x1611, 0x0630, 0x76D7, 0x66F6, 0x5695, 0x46B4,
0xB75B, 0xA77A, 0x9719, 0x8738, 0xF7DF, 0xE7FE, 0xD79D, 0xC7BC,
0x48C4, 0x58E5, 0x6886, 0x78A7, 0x0840, 0x1861, 0x2802, 0x3823,
0xC9CC, 0xD9ED, 0xE98E, 0xF9AF, 0x8948, 0x9969, 0xA90A, 0xB92B,
0x5AF5, 0x4AD4, 0x7AB7, 0x6A96, 0x1A71, 0x0A50, 0x3A33, 0x2A12,
0xDBFD, 0xCBDC, 0xFBBF, 0xEB9E, 0x9B79, 0x8B58, 0xBB3B, 0xAB1A,
0x6CA6, 0x7C87, 0x4CE4, 0x5CC5, 0x2C22, 0x3C03, 0x0C60, 0x1C41,
0xEDAE, 0xFD8F, 0xCDEC, 0xDDCD, 0xAD2A, 0xBD0B, 0x8D68, 0x9D49,
0x7E97, 0x6EB6, 0x5ED5, 0x4EF4, 0x3E13, 0x2E32, 0x1E51, 0x0E70,
0xFF9F, 0xEFBE, 0xDFDD, 0xCFFC, 0xBF1B, 0xAF3A, 0x9F59, 0x8F78,
0x9188, 0x81A9, 0xB1CA, 0xA1EB, 0xD10C, 0xC12D, 0xF14E, 0xE16F,
0x1080, 0x00A1, 0x30C2, 0x20E3, 0x5004, 0x4025, 0x7046, 0x6067,
0x83B9, 0x9398, 0xA3FB, 0xB3DA, 0xC33D, 0xD31C, 0xE37F, 0xF35E,
0x02B1, 0x1290, 0x22F3, 0x32D2, 0x4235, 0x5214, 0x6277, 0x7256,
0xB5EA, 0xA5CB, 0x95A8, 0x8589, 0xF56E, 0xE54F, 0xD52C, 0xC50D,
0x34E2, 0x24C3, 0x14A0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,
0xA7DB, 0xB7FA, 0x8799, 0x97B8, 0xE75F, 0xF77E, 0xC71D, 0xD73C,
0x26D3, 0x36F2, 0x0691, 0x16B0, 0x6657, 0x7676, 0x4615, 0x5634,
0xD94C, 0xC96D, 0xF90E, 0xE92F, 0x99C8, 0x89E9, 0xB98A, 0xA9AB,
0x5844, 0x4865, 0x7806, 0x6827, 0x18C0, 0x08E1, 0x3882, 0x28A3,
0xCB7D, 0xDB5C, 0xEB3F, 0xFB1E, 0x8BF9, 0x9BD8, 0xABBB, 0xBB9A,
0x4A75, 0x5A54, 0x6A37, 0x7A16, 0x0AF1, 0x1AD0, 0x2AB3, 0x3A92,
0xFD2E, 0xED0F, 0xDD6C, 0xCD4D, 0xBDAA, 0xAD8B, 0x9DE8, 0x8DC9,
0x7C26, 0x6C07, 0x5C64, 0x4C45, 0x3CA2, 0x2C83, 0x1CE0, 0x0CC1,
0xEF1F, 0xFF3E, 0xCF5D, 0xDF7C, 0xAF9B, 0xBFBA, 0x8FD9, 0x9FF8,
0x6E17, 0x7E36, 0x4E55, 0x5E74, 0x2E93, 0x3EB2, 0x0ED1, 0x1EF0};
static const uint32_t tbl_CRC24Q[] = {
0x000000, 0x864CFB, 0x8AD50D, 0x0C99F6, 0x93E6E1, 0x15AA1A, 0x1933EC, 0x9F7F17,
0xA18139, 0x27CDC2, 0x2B5434, 0xAD18CF, 0x3267D8, 0xB42B23, 0xB8B2D5, 0x3EFE2E,
0xC54E89, 0x430272, 0x4F9B84, 0xC9D77F, 0x56A868, 0xD0E493, 0xDC7D65, 0x5A319E,
0x64CFB0, 0xE2834B, 0xEE1ABD, 0x685646, 0xF72951, 0x7165AA, 0x7DFC5C, 0xFBB0A7,
0x0CD1E9, 0x8A9D12, 0x8604E4, 0x00481F, 0x9F3708, 0x197BF3, 0x15E205, 0x93AEFE,
0xAD50D0, 0x2B1C2B, 0x2785DD, 0xA1C926, 0x3EB631, 0xB8FACA, 0xB4633C, 0x322FC7,
0xC99F60, 0x4FD39B, 0x434A6D, 0xC50696, 0x5A7981, 0xDC357A, 0xD0AC8C, 0x56E077,
0x681E59, 0xEE52A2, 0xE2CB54, 0x6487AF, 0xFBF8B8, 0x7DB443, 0x712DB5, 0xF7614E,
0x19A3D2, 0x9FEF29, 0x9376DF, 0x153A24, 0x8A4533, 0x0C09C8, 0x00903E, 0x86DCC5,
0xB822EB, 0x3E6E10, 0x32F7E6, 0xB4BB1D, 0x2BC40A, 0xAD88F1, 0xA11107, 0x275DFC,
0xDCED5B, 0x5AA1A0, 0x563856, 0xD074AD, 0x4F0BBA, 0xC94741, 0xC5DEB7, 0x43924C,
0x7D6C62, 0xFB2099, 0xF7B96F, 0x71F594, 0xEE8A83, 0x68C678, 0x645F8E, 0xE21375,
0x15723B, 0x933EC0, 0x9FA736, 0x19EBCD, 0x8694DA, 0x00D821, 0x0C41D7, 0x8A0D2C,
0xB4F302, 0x32BFF9, 0x3E260F, 0xB86AF4, 0x2715E3, 0xA15918, 0xADC0EE, 0x2B8C15,
0xD03CB2, 0x567049, 0x5AE9BF, 0xDCA544, 0x43DA53, 0xC596A8, 0xC90F5E, 0x4F43A5,
0x71BD8B, 0xF7F170, 0xFB6886, 0x7D247D, 0xE25B6A, 0x641791, 0x688E67, 0xEEC29C,
0x3347A4, 0xB50B5F, 0xB992A9, 0x3FDE52, 0xA0A145, 0x26EDBE, 0x2A7448, 0xAC38B3,
0x92C69D, 0x148A66, 0x181390, 0x9E5F6B, 0x01207C, 0x876C87, 0x8BF571, 0x0DB98A,
0xF6092D, 0x7045D6, 0x7CDC20, 0xFA90DB, 0x65EFCC, 0xE3A337, 0xEF3AC1, 0x69763A,
0x578814, 0xD1C4EF, 0xDD5D19, 0x5B11E2, 0xC46EF5, 0x42220E, 0x4EBBF8, 0xC8F703,
0x3F964D, 0xB9DAB6, 0xB54340, 0x330FBB, 0xAC70AC, 0x2A3C57, 0x26A5A1, 0xA0E95A,
0x9E1774, 0x185B8F, 0x14C279, 0x928E82, 0x0DF195, 0x8BBD6E, 0x872498, 0x016863,
0xFAD8C4, 0x7C943F, 0x700DC9, 0xF64132, 0x693E25, 0xEF72DE, 0xE3EB28, 0x65A7D3,
0x5B59FD, 0xDD1506, 0xD18CF0, 0x57C00B, 0xC8BF1C, 0x4EF3E7, 0x426A11, 0xC426EA,
0x2AE476, 0xACA88D, 0xA0317B, 0x267D80, 0xB90297, 0x3F4E6C, 0x33D79A, 0xB59B61,
0x8B654F, 0x0D29B4, 0x01B042, 0x87FCB9, 0x1883AE, 0x9ECF55, 0x9256A3, 0x141A58,
0xEFAAFF, 0x69E604, 0x657FF2, 0xE33309, 0x7C4C1E, 0xFA00E5, 0xF69913, 0x70D5E8,
0x4E2BC6, 0xC8673D, 0xC4FECB, 0x42B230, 0xDDCD27, 0x5B81DC, 0x57182A, 0xD154D1,
0x26359F, 0xA07964, 0xACE092, 0x2AAC69, 0xB5D37E, 0x339F85, 0x3F0673, 0xB94A88,
0x87B4A6, 0x01F85D, 0x0D61AB, 0x8B2D50, 0x145247, 0x921EBC, 0x9E874A, 0x18CBB1,
0xE37B16, 0x6537ED, 0x69AE1B, 0xEFE2E0, 0x709DF7, 0xF6D10C, 0xFA48FA, 0x7C0401,
0x42FA2F, 0xC4B6D4, 0xC82F22, 0x4E63D9, 0xD11CCE, 0x575035, 0x5BC9C3, 0xDD8538};
/* function prototypes -------------------------------------------------------*/
#ifdef MKL
#define LAPACK
#define dgemm_ dgemm
#define dgetrf_ dgetrf
#define dgetri_ dgetri
#define dgetrs_ dgetrs
#endif
#ifdef LAPACK
extern void dgemm_(char *, char *, int *, int *, int *, double *, double *,
int *, double *, int *, double *, double *, int *);
extern void dgetrf_(int *, int *, double *, int *, int *, int *);
extern void dgetri_(int *, double *, int *, int *, double *, int *, int *);
extern void dgetrs_(char *, int *, int *, double *, int *, int *, double *,
int *, int *);
#endif
#ifdef IERS_MODEL
extern int gmf_(double *mjd, double *lat, double *lon, double *hgt, double *zd,
double *gmfh, double *gmfw);
#endif
/* fatal error ---------------------------------------------------------------*/
static void fatalerr(const char *format, ...)
{
char msg[1024];
va_list ap;
va_start(ap, format);
vsprintf(msg, format, ap);
va_end(ap);
if (fatalfunc)
fatalfunc(msg);
else
fprintf(stderr, "%s", msg);
exit(-9);
}
/* add fatal callback function -------------------------------------------------
* add fatal callback function for mat(),zeros(),imat()
* args : fatalfunc_t *func I callback function
* return : none
* notes : if malloc() failed in return : none
*-----------------------------------------------------------------------------*/
extern void add_fatal(fatalfunc_t *func)
{
fatalfunc = func;
}
/* satellite system+prn/slot number to satellite number ------------------------
* convert satellite system+prn/slot number to satellite number
* args : int sys I satellite system (SYS_GPS,SYS_GLO,...)
* int prn I satellite prn/slot number
* return : satellite number (0:error)
*-----------------------------------------------------------------------------*/
extern int satno(int sys, int prn)
{
if (prn <= 0)
return 0;
switch (sys)
{
case SYS_GPS:
if (prn < MINPRNGPS || MAXPRNGPS < prn)
return 0;
return prn - MINPRNGPS + 1;
case SYS_GLO:
if (prn < MINPRNGLO || MAXPRNGLO < prn)
return 0;
return NSATGPS + prn - MINPRNGLO + 1;
case SYS_GAL:
if (prn < MINPRNGAL || MAXPRNGAL < prn)
return 0;
return NSATGPS + NSATGLO + prn - MINPRNGAL + 1;
case SYS_QZS:
if (prn < MINPRNQZS || MAXPRNQZS < prn)
return 0;
return NSATGPS + NSATGLO + NSATGAL + prn - MINPRNQZS + 1;
case SYS_CMP:
if (prn < MINPRNCMP || MAXPRNCMP < prn)
return 0;
return NSATGPS + NSATGLO + NSATGAL + NSATQZS + prn - MINPRNCMP + 1;
case SYS_IRN:
if (prn < MINPRNIRN || MAXPRNIRN < prn)
return 0;
return NSATGPS + NSATGLO + NSATGAL + NSATQZS + NSATCMP + prn - MINPRNIRN + 1;
case SYS_LEO:
if (prn < MINPRNLEO || MAXPRNLEO < prn)
return 0;
return NSATGPS + NSATGLO + NSATGAL + NSATQZS + NSATCMP + NSATIRN +
prn - MINPRNLEO + 1;
case SYS_SBS:
if (prn < MINPRNSBS || MAXPRNSBS < prn)
return 0;
return NSATGPS + NSATGLO + NSATGAL + NSATQZS + NSATCMP + NSATIRN + NSATLEO +
prn - MINPRNSBS + 1;
}
return 0;
}
/* satellite number to satellite system ----------------------------------------
* convert satellite number to satellite system
* args : int sat I satellite number (1-MAXSAT)
* int *prn IO satellite prn/slot number (NULL: no output)
* return : satellite system (SYS_GPS,SYS_GLO,...)
*-----------------------------------------------------------------------------*/
extern int satsys(int sat, int *prn)
{
int sys = SYS_NONE;
if (sat <= 0 || MAXSAT < sat)
sat = 0;
else if (sat <= NSATGPS)
{
sys = SYS_GPS;
sat += MINPRNGPS - 1;
}
else if ((sat -= NSATGPS) <= NSATGLO)
{
sys = SYS_GLO;
sat += MINPRNGLO - 1;
}
else if ((sat -= NSATGLO) <= NSATGAL)
{
sys = SYS_GAL;
sat += MINPRNGAL - 1;
}
else if ((sat -= NSATGAL) <= NSATQZS)
{
sys = SYS_QZS;
sat += MINPRNQZS - 1;
}
else if ((sat -= NSATQZS) <= NSATCMP)
{
sys = SYS_CMP;
sat += MINPRNCMP - 1;
}
else if ((sat -= NSATCMP) <= NSATIRN)
{
sys = SYS_IRN;
sat += MINPRNIRN - 1;
}
else if ((sat -= NSATIRN) <= NSATLEO)
{
sys = SYS_LEO;
sat += MINPRNLEO - 1;
}
else if ((sat -= NSATLEO) <= NSATSBS)
{
sys = SYS_SBS;
sat += MINPRNSBS - 1;
}
else
sat = 0;
if (prn)
*prn = sat;
return sys;
}
/* satellite id to satellite number --------------------------------------------
* convert satellite id to satellite number
* args : char *id I satellite id (nn,Gnn,Rnn,Enn,Jnn,Cnn,Inn or Snn)
* return : satellite number (0: error)
* notes : 120-142 and 193-199 are also recognized as sbas and qzss
*-----------------------------------------------------------------------------*/
extern int satid2no(const char *id)
{
int sys, prn;
char code;
if (sscanf(id, "%d", &prn) == 1)
{
if (MINPRNGPS <= prn && prn <= MAXPRNGPS)
sys = SYS_GPS;
else if (MINPRNSBS <= prn && prn <= MAXPRNSBS)
sys = SYS_SBS;
else if (MINPRNQZS <= prn && prn <= MAXPRNQZS)
sys = SYS_QZS;
else
return 0;
return satno(sys, prn);
}
if (sscanf(id, "%c%d", &code, &prn) < 2)
return 0;
switch (code)
{
case 'G':
sys = SYS_GPS;
prn += MINPRNGPS - 1;
break;
case 'R':
sys = SYS_GLO;
prn += MINPRNGLO - 1;
break;
case 'E':
sys = SYS_GAL;
prn += MINPRNGAL - 1;
break;
case 'J':
sys = SYS_QZS;
prn += MINPRNQZS - 1;
break;
case 'C':
sys = SYS_CMP;
prn += MINPRNCMP - 1;
break;
case 'I':
sys = SYS_IRN;
prn += MINPRNIRN - 1;
break;
case 'L':
sys = SYS_LEO;
prn += MINPRNLEO - 1;
break;
case 'S':
sys = SYS_SBS;
prn += 100;
break;
default:
return 0;
}
return satno(sys, prn);
}
/* satellite number to satellite id --------------------------------------------
* convert satellite number to satellite id
* args : int sat I satellite number
* char *id O satellite id (Gnn,Rnn,Enn,Jnn,Cnn,Inn or nnn)
* return : none
*-----------------------------------------------------------------------------*/
extern void satno2id(int sat, char *id)
{
int prn;
switch (satsys(sat, &prn))
{
case SYS_GPS:
sprintf(id, "G%02d", prn - MINPRNGPS + 1);
return;
case SYS_GLO:
sprintf(id, "R%02d", prn - MINPRNGLO + 1);
return;
case SYS_GAL:
sprintf(id, "E%02d", prn - MINPRNGAL + 1);
return;
case SYS_QZS:
sprintf(id, "J%02d", prn - MINPRNQZS + 1);
return;
case SYS_CMP:
sprintf(id, "C%02d", prn - MINPRNCMP + 1);
return;
case SYS_IRN:
sprintf(id, "I%02d", prn - MINPRNIRN + 1);
return;
case SYS_LEO:
sprintf(id, "L%02d", prn - MINPRNLEO + 1);
return;
case SYS_SBS:
sprintf(id, "%03d", prn);
return;
}
strcpy(id, "");
}
/* test excluded satellite -----------------------------------------------------
* test excluded satellite
* args : int sat I satellite number
* double var I variance of ephemeris (m^2)
* int svh I sv health flag
* prcopt_t *opt I processing options (NULL: not used)
* return : status (1:excluded,0:not excluded)
*-----------------------------------------------------------------------------*/
extern int satexclude(int sat, double var, int svh, const prcopt_t *opt)
{
int sys = satsys(sat, NULL);
if (svh < 0)
return 1; /* ephemeris unavailable */
if (opt)
{
if (opt->exsats[sat - 1] == 1)
return 1; /* excluded satellite */
if (opt->exsats[sat - 1] == 2)
return 0; /* included satellite */
if (!(sys & opt->navsys))
return 1; /* unselected sat sys */
}
if (sys == SYS_QZS)
svh &= 0xFE; /* mask QZSS LEX health */
if (svh)
{
trace(3, "unhealthy satellite: sat=%3d svh=%02X\n", sat, svh);
return 1;
}
if (var > MAX_VAR_EPH)
{
trace(3, "invalid ura satellite: sat=%3d ura=%.2f\n", sat, sqrt(var));
return 1;
}
return 0;
}
/* test SNR mask ---------------------------------------------------------------
* test SNR mask
* args : int base I rover or base-station (0:rover,1:base station)
* int idx I frequency index (0:L1,1:L2,2:L3,...)
* double el I elevation angle (rad)
* double snr I C/N0 (dBHz)
* snrmask_t *mask I SNR mask
* return : status (1:masked,0:unmasked)
*-----------------------------------------------------------------------------*/
extern int testsnr(int base, int idx, double el, double snr,
const snrmask_t *mask)
{
double minsnr, a;
int i;
if (!mask->ena[base] || idx < 0 || idx >= NFREQ)
return 0;
a = (el * R2D + 5.0) / 10.0;
i = (int)floor(a);
a -= i;
if (i < 1)
minsnr = mask->mask[idx][0];
else if (i > 8)
minsnr = mask->mask[idx][8];
else
minsnr = (1.0 - a) * mask->mask[idx][i - 1] + a * mask->mask[idx][i];
return snr < minsnr;
}
/* obs type string to obs code -------------------------------------------------
* convert obs code type string to obs code
* args : char *str I obs code string ("1C","1P","1Y",...)
* return : obs code (CODE_???)
* notes : obs codes are based on RINEX 3.04
*-----------------------------------------------------------------------------*/
extern uint8_t obs2code(const char *obs)
{
int i;
for (i = 1; *obscodes[i]; i++)
{
if (strcmp(obscodes[i], obs))
continue;
return (uint8_t)i;
}
return CODE_NONE;
}
/* obs code to obs code string -------------------------------------------------
* convert obs code to obs code string
* args : uint8_t code I obs code (CODE_???)
* return : obs code string ("1C","1P","1P",...)
* notes : obs codes are based on RINEX 3.04
*-----------------------------------------------------------------------------*/
extern char *code2obs(uint8_t code)
{
if (code <= CODE_NONE || MAXCODE < code)
return "";
return obscodes[code];
}
/* GPS obs code to frequency -------------------------------------------------*/
static int code2freq_GPS(uint8_t code, double *freq)
{
char *obs = code2obs(code);
switch (obs[0])
{
case '1':
*freq = FREQL1;
return 0; /* L1 */
case '2':
*freq = FREQL2;
return 1; /* L2 */
case '5':
*freq = FREQL5;
return 2; /* L5 */
}
return -1;
}
/* GLONASS obs code to frequency ---------------------------------------------*/
static int code2freq_GLO(uint8_t code, int fcn, double *freq)
{
char *obs = code2obs(code);
if (fcn < -7 || fcn > 6)
return -1;
switch (obs[0])
{
case '1':
*freq = FREQ1_GLO + DFRQ1_GLO * fcn;
return 0; /* G1 */
case '2':
*freq = FREQ2_GLO + DFRQ2_GLO * fcn;
return 1; /* G2 */
case '3':
*freq = FREQ3_GLO;
return 2; /* G3 */
case '4':
*freq = FREQ1a_GLO;
return 0; /* G1a */
case '6':
*freq = FREQ2a_GLO;
return 1; /* G2a */
}
return -1;
}
/* Galileo obs code to frequency ---------------------------------------------*/
static int code2freq_GAL(uint8_t code, double *freq)
{
char *obs = code2obs(code);
switch (obs[0])
{
case '1':
*freq = FREQL1;
return 0; /* E1 */
case '7':
*freq = FREQE5b;
return 1; /* E5b */
case '5':
*freq = FREQL5;
return 2; /* E5a */
case '6':
*freq = FREQL6;
return 3; /* E6 */
case '8':
*freq = FREQE5ab;
return 4; /* E5ab */
}
return -1;
}
/* QZSS obs code to frequency ------------------------------------------------*/
static int code2freq_QZS(uint8_t code, double *freq)
{
char *obs = code2obs(code);
switch (obs[0])
{
case '1':
*freq = FREQL1;
return 0; /* L1 */
case '2':
*freq = FREQL2;
return 1; /* L2 */
case '5':
*freq = FREQL5;
return 2; /* L5 */
case '6':
*freq = FREQL6;
return 3; /* L6 */
}
return -1;
}
/* SBAS obs code to frequency ------------------------------------------------*/
static int code2freq_SBS(uint8_t code, double *freq)
{
char *obs = code2obs(code);
switch (obs[0])
{
case '1':
*freq = FREQL1;
return 0; /* L1 */
case '5':
*freq = FREQL5;
return 1; /* L5 */
}
return -1;
}
/* BDS obs code to frequency -------------------------------------------------*/
static int code2freq_BDS(uint8_t code, double *freq)
{
char *obs = code2obs(code);
switch (obs[0])
{
case '1':
*freq = FREQL1;
return 0; /* B1C ---->C1(BDS3)*/
case '2':
*freq = FREQ1_CMP;
return 0; /* B1I---->C2(BDS2,BDS3) */
case '7':
*freq = FREQ2_CMP;
return 1; /* B2I/B2b ---->C7(BDS2,BDS3)*/
case '5':
*freq = FREQL5;
return 2; /* B2a ----->C5(BDS3)*/
case '6':
*freq = FREQ3_CMP;
return 3; /* B3 ----C6(BDS2)*/
case '8':
*freq = FREQE5ab;
return 4; /* B2ab----C8,B2(BDS3) */
}
return -1;
}
/* NavIC obs code to frequency -----------------------------------------------*/
static int code2freq_IRN(uint8_t code, double *freq)
{
char *obs = code2obs(code);
switch (obs[0])
{
case '5':
*freq = FREQL5;
return 0; /* L5 */
case '9':
*freq = FREQs;
return 1; /* S */
}
return -1;
}
/* system and obs code to frequency index --------------------------------------
* convert system and obs code to frequency index
* args : int sys I satellite system (SYS_???)
* uint8_t code I obs code (CODE_???)
* return : frequency index (-1: error)
* 0 1 2 3 4
* --------------------------------------
* GPS L1 L2 L5 - -
* GLONASS G1 G2 G3 - - (G1=G1,G1a,G2=G2,G2a)
* Galileo E1 E5b E5a E6 E5ab
* QZSS L1 L2 L5 L6 -
* SBAS L1 - L5 - -
* BDS B1 B2 B2a B3 B2ab (B1=B1I,B1C,B2=B2I,B2b)
* NavIC L5 S - - -
*-----------------------------------------------------------------------------*/
extern int code2idx(int sys, uint8_t code)
{
double freq;
switch (sys)
{
case SYS_GPS:
return code2freq_GPS(code, &freq);
case SYS_GLO:
return code2freq_GLO(code, 0, &freq);
case SYS_GAL:
return code2freq_GAL(code, &freq);
case SYS_QZS:
return code2freq_QZS(code, &freq);
case SYS_SBS:
return code2freq_SBS(code, &freq);
case SYS_CMP:
return code2freq_BDS(code, &freq);
case SYS_IRN:
return code2freq_IRN(code, &freq);
}
return -1;
}
/* system and obs code to frequency --------------------------------------------
* convert system and obs code to carrier frequency
* args : int sys I satellite system (SYS_???)
* uint8_t code I obs code (CODE_???)
* int fcn I frequency channel number for GLONASS
* return : carrier frequency (Hz) (0.0: error)
*-----------------------------------------------------------------------------*/
extern double code2freq(int sys, uint8_t code, int fcn)
{
double freq = 0.0;
switch (sys)
{
case SYS_GPS:
(void)code2freq_GPS(code, &freq);
break;
case SYS_GLO:
(void)code2freq_GLO(code, fcn, &freq);
break;
case SYS_GAL:
(void)code2freq_GAL(code, &freq);
break;
case SYS_QZS:
(void)code2freq_QZS(code, &freq);
break;
case SYS_SBS:
(void)code2freq_SBS(code, &freq);
break;
case SYS_CMP:
(void)code2freq_BDS(code, &freq);
break;
case SYS_IRN:
(void)code2freq_IRN(code, &freq);
break;
}
return freq;
}
/* satellite and obs code to frequency -----------------------------------------
* convert satellite and obs code to carrier frequency
* args : int sat I satellite number
* uint8_t code I obs code (CODE_???)
* nav_t *nav_t I navigation data for GLONASS (NULL: not used)
* return : carrier frequency (Hz) (0.0: error)
*-----------------------------------------------------------------------------*/
extern double sat2freq(int sat, uint8_t code, const nav_t *nav)
{
int i, fcn = 0, sys, prn;
sys = satsys(sat, &prn);
if (sys == SYS_GLO)
{
if (!nav)
return 0.0;
for (i = 0; i < nav->ng; i++)
{
if (nav->geph[i].sat == sat)
break;
}
if (i < nav->ng)
{
fcn = nav->geph[i].frq;
}
else if (nav->glo_fcn[prn - 1] > 0)
{
fcn = nav->glo_fcn[prn - 1] - 8;
}
else
return 0.0;
}
return code2freq(sys, code, fcn);
}
/* set code priority -----------------------------------------------------------
* set code priority for multiple codes in a frequency
* args : int sys I system (or of SYS_???)
* int idx I frequency index (0- )
* char *pri I priority of codes (series of code characters)
* (higher priority precedes lower)
* return : none
*-----------------------------------------------------------------------------*/
extern void setcodepri(int sys, int idx, const char *pri)
{
trace(3, "setcodepri:sys=%d idx=%d pri=%s\n", sys, idx, pri);
if (idx < 0 || idx >= MAXFREQ)
return;
if (sys & SYS_GPS)
strcpy(codepris[0][idx], pri);
if (sys & SYS_GLO)
strcpy(codepris[1][idx], pri);
if (sys & SYS_GAL)
strcpy(codepris[2][idx], pri);
if (sys & SYS_QZS)
strcpy(codepris[3][idx], pri);
if (sys & SYS_SBS)
strcpy(codepris[4][idx], pri);
if (sys & SYS_CMP)
strcpy(codepris[5][idx], pri);
if (sys & SYS_IRN)
strcpy(codepris[6][idx], pri);
}
/* get code priority -----------------------------------------------------------
* get code priority for multiple codes in a frequency
* args : int sys I system (SYS_???)
* uint8_t code I obs code (CODE_???)
* char *opt I code options (NULL:no option)
* return : priority (15:highest-1:lowest,0:error)
*-----------------------------------------------------------------------------*/
extern int getcodepri(int sys, uint8_t code, const char *opt)
{
const char *p, *optstr;
char *obs, str[8] = "";
int i, j;
switch (sys)
{
case SYS_GPS:
i = 0;
optstr = "-GL%2s";
break;
case SYS_GLO:
i = 1;
optstr = "-RL%2s";
break;
case SYS_GAL:
i = 2;
optstr = "-EL%2s";
break;
case SYS_QZS:
i = 3;
optstr = "-JL%2s";
break;
case SYS_SBS:
i = 4;
optstr = "-SL%2s";
break;
case SYS_CMP:
i = 5;
optstr = "-CL%2s";
break;
case SYS_IRN:
i = 6;
optstr = "-IL%2s";
break;
default:
return 0;
}
if ((j = code2idx(sys, code)) < 0)
return 0;
obs = code2obs(code);
/* parse code options */
for (p = opt; p && (p = strchr(p, '-')); p++)
{
if (sscanf(p, optstr, str) < 1 || str[0] != obs[0])
continue;
return str[1] == obs[1] ? 15 : 0;
}
/* search code priority */
return (p = strchr(codepris[i][j], obs[1])) ? 14 - (int)(p - codepris[i][j]) : 0;
}
/* extract unsigned/signed bits ------------------------------------------------
* extract unsigned/signed bits from byte data
* args : uint8_t *buff I byte data
* int pos I bit position from start of data (bits)
* int len I bit length (bits) (len<=32)
* return : extracted unsigned/signed bits
*-----------------------------------------------------------------------------*/
extern uint32_t getbitu(const uint8_t *buff, int pos, int len)
{
uint32_t bits = 0;
int i;
for (i = pos; i < pos + len; i++)
bits = (bits << 1) + ((buff[i / 8] >> (7 - i % 8)) & 1u);
return bits;
}
extern int32_t getbits(const uint8_t *buff, int pos, int len)
{
uint32_t bits = getbitu(buff, pos, len);
if (len <= 0 || 32 <= len || !(bits & (1u << (len - 1))))
return (int32_t)bits;
return (int32_t)(bits | (~0u << len)); /* extend sign */
}
/* set unsigned/signed bits ----------------------------------------------------
* set unsigned/signed bits to byte data
* args : uint8_t *buff IO byte data
* int pos I bit position from start of data (bits)
* int len I bit length (bits) (len<=32)
* [u]int32_t data I unsigned/signed data
* return : none
*-----------------------------------------------------------------------------*/
extern void setbitu(uint8_t *buff, int pos, int len, uint32_t data)
{
uint32_t mask = 1u << (len - 1);
int i;
if (len <= 0 || 32 < len)
return;
for (i = pos; i < pos + len; i++, mask >>= 1)
{
if (data & mask)
buff[i / 8] |= 1u << (7 - i % 8);
else
buff[i / 8] &= ~(1u << (7 - i % 8));
}
}
extern void setbits(uint8_t *buff, int pos, int len, int32_t data)
{
if (data < 0)
data |= 1 << (len - 1);
else
data &= ~(1 << (len - 1)); /* set sign bit */
setbitu(buff, pos, len, (uint32_t)data);
}
/* crc-32 parity ---------------------------------------------------------------
* compute crc-32 parity for novatel raw
* args : uint8_t *buff I data
* int len I data length (bytes)
* return : crc-32 parity
* notes : see NovAtel OEMV firmware manual 1.7 32-bit CRC
*-----------------------------------------------------------------------------*/
extern uint32_t rtk_crc32(const uint8_t *buff, int len)
{
uint32_t crc = 0;
int i, j;
trace(4, "rtk_crc32: len=%d\n", len);
for (i = 0; i < len; i++)
{
crc ^= buff[i];
for (j = 0; j < 8; j++)
{
if (crc & 1)
crc = (crc >> 1) ^ POLYCRC32;
else
crc >>= 1;
}
}
return crc;
}
/* crc-24q parity --------------------------------------------------------------
* compute crc-24q parity for sbas, rtcm3
* args : uint8_t *buff I data
* int len I data length (bytes)
* return : crc-24Q parity
* notes : see reference [2] A.4.3.3 Parity
*-----------------------------------------------------------------------------*/
extern uint32_t rtk_crc24q(const uint8_t *buff, int len)
{
uint32_t crc = 0;
int i;
trace(4, "rtk_crc24q: len=%d\n", len);
for (i = 0; i < len; i++)
crc = ((crc << 8) & 0xFFFFFF) ^ tbl_CRC24Q[(crc >> 16) ^ buff[i]];
return crc;
}
/* crc-16 parity ---------------------------------------------------------------
* compute crc-16 parity for binex, nvs
* args : uint8_t *buff I data
* int len I data length (bytes)
* return : crc-16 parity
* notes : see reference [10] A.3.
*-----------------------------------------------------------------------------*/
extern uint16_t rtk_crc16(const uint8_t *buff, int len)
{
uint16_t crc = 0;
int i;
trace(4, "rtk_crc16: len=%d\n", len);
for (i = 0; i < len; i++)
{
crc = (crc << 8) ^ tbl_CRC16[((crc >> 8) ^ buff[i]) & 0xFF];
}
return crc;
}
/* decode navigation data word -------------------------------------------------
* check party and decode navigation data word
* args : uint32_t word I navigation data word (2+30bit)
* (previous word D29*-30* + current word D1-30)
* uint8_t *data O decoded navigation data without parity
* (8bitx3)
* return : status (1:ok,0:parity error)
* notes : see reference [1] 20.3.5.2 user parity algorithm
*-----------------------------------------------------------------------------*/
extern int decode_word(uint32_t word, uint8_t *data)
{
const uint32_t hamming[] = {
0xBB1F3480, 0x5D8F9A40, 0xAEC7CD00, 0x5763E680, 0x6BB1F340, 0x8B7A89C0};
uint32_t parity = 0, w;
int i;
trace(5, "decodeword: word=%08x\n", word);
if (word & 0x40000000)
word ^= 0x3FFFFFC0;
for (i = 0; i < 6; i++)
{
parity <<= 1;
for (w = (word & hamming[i]) >> 6; w; w >>= 1)
parity ^= w & 1;
}
if (parity != (word & 0x3F))
return 0;
for (i = 0; i < 3; i++)
data[i] = (uint8_t)(word >> (22 - i * 8));
return 1;
}
/* new matrix ------------------------------------------------------------------
* allocate memory of matrix
* args : int n,m I number of rows and columns of matrix
* return : matrix pointer (if n<=0 or m<=0, return NULL)
*-----------------------------------------------------------------------------*/
extern double *mat(int n, int m)
{
double *p;
if (n <= 0 || m <= 0)
return NULL;
if (!(p = (double *)malloc(sizeof(double) * n * m)))
{
fatalerr("matrix memory allocation error: n=%d,m=%d\n", n, m);
}
return p;
}
/* new integer matrix ----------------------------------------------------------
* allocate memory of integer matrix
* args : int n,m I number of rows and columns of matrix
* return : matrix pointer (if n<=0 or m<=0, return NULL)
*-----------------------------------------------------------------------------*/
extern int *imat(int n, int m)
{
int *p;
if (n <= 0 || m <= 0)
return NULL;
if (!(p = (int *)malloc(sizeof(int) * n * m)))
{
fatalerr("integer matrix memory allocation error: n=%d,m=%d\n", n, m);
}
return p;
}
/* zero matrix -----------------------------------------------------------------
* generate new zero matrix
* args : int n,m I number of rows and columns of matrix
* return : matrix pointer (if n<=0 or m<=0, return NULL)
*-----------------------------------------------------------------------------*/
extern double *zeros(int n, int m)
{
double *p;
#if NOCALLOC
if ((p = mat(n, m)))
for (n = n * m - 1; n >= 0; n--)
p[n] = 0.0;
#else
if (n <= 0 || m <= 0)
return NULL;
if (!(p = (double *)calloc(sizeof(double), n * m)))
{
fatalerr("matrix memory allocation error: n=%d,m=%d\n", n, m);
}
#endif
return p;
}
/* identity matrix -------------------------------------------------------------
* generate new identity matrix
* args : int n I number of rows and columns of matrix
* return : matrix pointer (if n<=0, return NULL)
*-----------------------------------------------------------------------------*/
extern double *eye(int n)
{
double *p;
int i;
if ((p = zeros(n, n)))
for (i = 0; i < n; i++)
p[i + i * n] = 1.0;
return p;
}
/* inner product ---------------------------------------------------------------
* inner product of vectors
* args : double *a,*b I vector a,b (n x 1)
* int n I size of vector a,b
* return : a'*b
*-----------------------------------------------------------------------------*/
extern double dot(const double *a, const double *b, int n)
{
double c = 0.0;
while (--n >= 0)
c += a[n] * b[n];
return c;
}
/* euclid norm -----------------------------------------------------------------
* euclid norm of vector
* args : double *a I vector a (n x 1)
* int n I size of vector a
* return : || a ||
*-----------------------------------------------------------------------------*/
extern double norm(const double *a, int n)
{
return sqrt(dot(a, a, n));
}
/* outer product of 3d vectors -------------------------------------------------
* outer product of 3d vectors
* args : double *a,*b I vector a,b (3 x 1)
* double *c O outer product (a x b) (3 x 1)
* return : none
*-----------------------------------------------------------------------------*/
extern void cross3(const double *a, const double *b, double *c)
{
c[0] = a[1] * b[2] - a[2] * b[1];
c[1] = a[2] * b[0] - a[0] * b[2];
c[2] = a[0] * b[1] - a[1] * b[0];
}
/* normalize 3d vector ---------------------------------------------------------
* normalize 3d vector
* args : double *a I vector a (3 x 1)
* double *b O normlized vector (3 x 1) || b || = 1
* return : status (1:ok,0:error)
*-----------------------------------------------------------------------------*/
extern int normv3(const double *a, double *b)
{
double r;
if ((r = norm(a, 3)) <= 0.0)
return 0;
b[0] = a[0] / r;
b[1] = a[1] / r;
b[2] = a[2] / r;
return 1;
}
/* copy matrix -----------------------------------------------------------------
* copy matrix
* args : double *A O destination matrix A (n x m)
* double *B I source matrix B (n x m)
* int n,m I number of rows and columns of matrix
* return : none
*-----------------------------------------------------------------------------*/
extern void matcpy(double *A, const double *B, int n, int m)
{
memcpy(A, B, sizeof(double) * n * m);
}
/* multiply matrix -----------------------------------------------------------
<EFBFBD>ڶ<EFBFBD>RTKLIB<EFBFBD><EFBFBD><EFBFBD>ж<EFBFBD><EFBFBD>ο<EFBFBD><EFBFBD><EFBFBD>ʱһ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>õ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>˺<EFBFBD><EFBFBD><EFBFBD>matmul<EFBFBD><EFBFBD>
extern void matmul(const char *tr, int n, int k, int m, double alpha, const double *A, const double *B, double beta, double *C)
<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ϊ<EFBFBD><EFBFBD>C=alpha*A*B+beta*C<><43>
<EFBFBD><EFBFBD><EFBFBD><EFBFBD>trΪ<EFBFBD>Ƿ<EFBFBD>ת<EFBFBD>õı<EFBFBD>־<EFBFBD><EFBFBD>
n<EFBFBD><EFBFBD>k<EFBFBD><EFBFBD>m<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ĵ<EFBFBD>С<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>˵<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ӧ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ĸ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ˣ<EFBFBD><EFBFBD><EFBFBD>һ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>б<EFBFBD>Ȼ<EFBFBD><EFBFBD><EFBFBD>ڵڶ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>У<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ϳ<EFBFBD><EFBFBD>Ա<EFBFBD>ʾ<EFBFBD><EFBFBD>
n<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>һ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>У<EFBFBD>k<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ڶ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>У<EFBFBD>m<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>һ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>к͵ڶ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>С<EFBFBD>
<EFBFBD><EFBFBD><EFBFBD><EFBFBD>֮<EFBFBD><EFBFBD><EFBFBD>԰<EFBFBD>n<EFBFBD><EFBFBD>k<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>˳<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>߼<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʵ<EFBFBD>Ǿ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>һ<EFBFBD><EFBFBD>Ҫѭ<EFBFBD><EFBFBD>n*k<>Σ<EFBFBD><CEA3>ӱ<EFBFBD><D3B1>̵<EFBFBD>˳<EFBFBD><CBB3><EFBFBD><EFBFBD><EFBFBD>ŵġ<C5B5>
*/
extern void matmul(const char *tr, int n, int k, int m, double alpha,
const double *A, const double *B, double beta, double *C)
{
double d;
int i, j, x, f = tr[0] == 'N' ? (tr[1] == 'N' ? 1 : 2) : (tr[1] == 'N' ? 3 : 4);
for (i = 0; i < n; i++)
for (j = 0; j < k; j++)
{
d = 0.0;
switch (f)
{
case 1:
for (x = 0; x < m; x++)
d += A[i + x * n] * B[x + j * m];
break;
case 2:
for (x = 0; x < m; x++)
d += A[i + x * n] * B[j + x * k];
break;
case 3:
for (x = 0; x < m; x++)
d += A[x + i * m] * B[x + j * m];
break;
case 4:
for (x = 0; x < m; x++)
d += A[x + i * m] * B[j + x * k];
break;
}
if (beta == 0.0)
C[i + j * n] = alpha * d;
else
C[i + j * n] = alpha * d + beta * C[i + j * n];
}
}
/* LU decomposition ----------------------------------------------------------*/
static int ludcmp(double *A, int n, int *indx, double *d)
{
double big, s, tmp, *vv = mat(n, 1);
int i, imax = 0, j, k;
*d = 1.0;
for (i = 0; i < n; i++)
{
big = 0.0;
for (j = 0; j < n; j++)
if ((tmp = fabs(A[i + j * n])) > big)
big = tmp;
if (big > 0.0)
vv[i] = 1.0 / big;
else
{
free(vv);
return -1;
}
}
for (j = 0; j < n; j++)
{
for (i = 0; i < j; i++)
{
s = A[i + j * n];
for (k = 0; k < i; k++)
s -= A[i + k * n] * A[k + j * n];
A[i + j * n] = s;
}
big = 0.0;
for (i = j; i < n; i++)
{
s = A[i + j * n];
for (k = 0; k < j; k++)
s -= A[i + k * n] * A[k + j * n];
A[i + j * n] = s;
if ((tmp = vv[i] * fabs(s)) >= big)
{
big = tmp;
imax = i;
}
}
if (j != imax)
{
for (k = 0; k < n; k++)
{
tmp = A[imax + k * n];
A[imax + k * n] = A[j + k * n];
A[j + k * n] = tmp;
}
*d = -(*d);
vv[imax] = vv[j];
}
indx[j] = imax;
if (A[j + j * n] == 0.0)
{
free(vv);
return -1;
}
if (j != n - 1)
{
tmp = 1.0 / A[j + j * n];
for (i = j + 1; i < n; i++)
A[i + j * n] *= tmp;
}
}
free(vv);
return 0;
}
/* LU back-substitution ------------------------------------------------------*/
static void lubksb(const double *A, int n, const int *indx, double *b)
{
double s;
int i, ii = -1, ip, j;
for (i = 0; i < n; i++)
{
ip = indx[i];
s = b[ip];
b[ip] = b[i];
if (ii >= 0)
for (j = ii; j < i; j++)
s -= A[i + j * n] * b[j];
else if (s)
ii = i;
b[i] = s;
}
for (i = n - 1; i >= 0; i--)
{
s = b[i];
for (j = i + 1; j < n; j++)
s -= A[i + j * n] * b[j];
b[i] = s / A[i + i * n];
}
}
/* inverse of matrix ---------------------------------------------------------*/
extern int matinv(double *A, int n)
{
double d, *B;
int i, j, *indx;
indx = imat(n, 1);
B = mat(n, n);
matcpy(B, A, n, n);
if (ludcmp(B, n, indx, &d))
{
free(indx);
free(B);
return -1;
}
for (j = 0; j < n; j++)
{
for (i = 0; i < n; i++)
A[i + j * n] = 0.0;
A[j + j * n] = 1.0;
lubksb(B, n, indx, A + j * n);
}
free(indx);
free(B);
return 0;
}
/* solve linear equation -----------------------------------------------------*/
extern int solve(const char *tr, const double *A, const double *Y, int n,
int m, double *X)
{
double *B = mat(n, n);
int info;
matcpy(B, A, n, n);
if (!(info = matinv(B, n)))
matmul(tr[0] == 'N' ? "NN" : "TN", n, m, n, 1.0, B, Y, 0.0, X);
free(B);
return info;
}
/* end of matrix routines ----------------------------------------------------*/
/* least square estimation -----------------------------------------------------
* least square estimation by solving normal equation (x=(A*A')^-1*A*y)
* args : double *A I transpose of (weighted) design matrix (n x m)
* double *y I (weighted) measurements (m x 1)
* int n,m I number of parameters and measurements (n<=m)
* double *x O estmated parameters (n x 1)
* double *Q O esimated parameters covariance matrix (n x n)
* return : status (0:ok,0>:error)
* notes : for weighted least square, replace A and y by A*w and w*y (w=W^(1/2))
* matirix stored by column-major order (fortran convention)
* <20><><EFBFBD><EFBFBD><EFBFBD>õ<EFBFBD><C3B5><EFBFBD><EFBFBD><EFBFBD> $x=(AAT){-1}Ay$ <20><><EFBFBD>ߵ<EFBFBD>ֵ<EFBFBD>͸<EFBFBD>ֵ<EFBFBD><D6B5>Э<EFBFBD><D0AD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> $Q=(AAT){-1}$
*-----------------------------------------------------------------------------*/
extern int lsq(const double *A, const double *y, int n, int m, double *x,
double *Q)
{
double *Ay;
int info;
if (m < n)
return -1;
Ay = mat(n, 1);
matmul("NN", n, 1, m, 1.0, A, y, 0.0, Ay); /* Ay=A*y 1<><31><EFBFBD><EFBFBD><EFBFBD>ȼ<EFBFBD><C8BC><EFBFBD><EFBFBD>Ұ벿<D2B0><EBB2BF> $A_y=Ay$<24><>*/
matmul("NT", n, n, m, 1.0, A, A, 0.0, Q); /* Q=A*A' 2<><32><EFBFBD>ټ<EFBFBD><D9BC><EFBFBD><EFBFBD><EFBFBD><EFBFBD>벿<EFBFBD><EBB2BF><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ֵ $Q=AA^T$<24><> */
if (!(info = matinv(Q, n)))
matmul("NN", n, 1, n, 1.0, Q, Ay, 0.0, x); /* x=Q^-1*Ay 3<><33><EFBFBD><EFBFBD><EFBFBD><EFBFBD> Q<><51><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> $Q^{-1}$<24><><EFBFBD><EFBFBD><EFBFBD>Դ洢<D4B4><E6B4A2> Q<>У<EFBFBD>
<20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ҳ<EFBFBD> $A_y$<24><><EFBFBD>õ<EFBFBD> x<><78>ֵ*/
free(Ay);
return info;
}
/* kalman filter ---------------------------------------------------------------
* kalman filter state update as follows:
*
* K=P*H*(H'*P*H+R)^-1, xp=x+K*v, Pp=(I-K*H')*P
*
* args : double *x I states vector (n x 1)
* double *P I covariance matrix of states (n x n)
* double *H I transpose of design matrix (n x m)
* double *v I innovation (measurement - model) (m x 1)
* double *R I covariance matrix of measurement error (m x m)
* int n,m I number of states and measurements
* double *xp O states vector after update (n x 1)
* double *Pp O covariance matrix of states after update (n x n)
* return : status (0:ok,<0:error)
* notes : matirix stored by column-major order (fortran convention)
* if state x[i]==0.0, not updates state x[i]/P[i+i*n]
* <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>˲<EFBFBD>״̬<D7B4><CCAC><EFBFBD>£<EFBFBD> K=P*H*(H'*P*H+R)^-1, xp=x+K*v, Pp=(I-K*H')*P
* <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>9<EFBFBD><39><EFBFBD><EFBFBD>
double *x I ״̬<D7B4><CCAC><EFBFBD><EFBFBD> (n x 1)
double *P I ״̬<D7B4><CCAC><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Э<EFBFBD><D0AD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> (n x n)
double *H I <20>۲<EFBFBD><DBB2><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ת<EFBFBD><D7AA> (n x m)
double *v I ʵ<>ʹ۲<CAB9><DBB2><EFBFBD><EFBFBD><EFBFBD>Ԥ<EFBFBD><D4A4><EFBFBD>۲<EFBFBD><DBB2><EFBFBD><EFBFBD>IJв<C4B2> (measurement - model) (m x 1)
double *R I <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Э<EFBFBD><D0AD><EFBFBD><EFBFBD> (m x m)
int n I ״̬<D7B4><CCAC><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
int m I <20>۲<EFBFBD>ֵ<EFBFBD><D6B5><EFBFBD><EFBFBD>
double *xp O <20><><EFBFBD>º<EFBFBD><C2BA><EFBFBD>״̬<D7B4><CCAC><EFBFBD><EFBFBD> (n x 1)
double *Pp O <20><><EFBFBD>º<EFBFBD><C2BA><EFBFBD>״̬<D7B4><CCAC><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Э<EFBFBD><D0AD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> (n x n)
<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>:
int O (0:ok,<0:error)
<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ǰ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ȵ<EFBFBD>˳<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> (fortran convention)
*-----------------------------------------------------------------------------*/
static int filter_(const double *x, const double *P, const double *H,
const double *v, const double *R, int n, int m,
double *xp, double *Pp)
{
//<2F><><EFBFBD>þ<EFBFBD><C3BE><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><E3BAAF><EFBFBD><EFBFBD><EFBFBD>չ<EFBFBD>ʽ<EFBFBD><CABD><EFBFBD>о<EFBFBD><D0BE><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
double *F = mat(n, m), *Q = mat(m, m), *K = mat(n, m), *I = eye(n);
int info;
matcpy(Q, R, m, m);
matcpy(xp, x, n, 1);
matmul("NN", n, m, n, 1.0, P, H, 0.0, F); /* Q=H'*P*H+R */
matmul("TN", m, m, n, 1.0, H, F, 1.0, Q);
if (!(info = matinv(Q, m)))
{
matmul("NN", n, m, m, 1.0, F, Q, 0.0, K); /* K=P*H*Q^-1 */
matmul("NN", n, 1, m, 1.0, K, v, 1.0, xp); /* xp=x+K*v */
matmul("NT", n, n, m, -1.0, K, H, 1.0, I); /* Pp=(I-K*H')*P */
matmul("NN", n, n, n, 1.0, I, P, 0.0, Pp);
}
free(F);
free(Q);
free(K);
free(I);
return info;
}
/*kalman<61>˲<EFBFBD><CBB2><EFBFBD><EFBFBD><EFBFBD>
<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>7<EFBFBD><EFBFBD><EFBFBD><EFBFBD>
double *x IO ״̬<D7B4><CCAC><EFBFBD><EFBFBD> (n x 1)
double *P IO ״̬<D7B4><CCAC><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Э<EFBFBD><D0AD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> (n x n)
double *H I <20>۲<EFBFBD><DBB2><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ת<EFBFBD><D7AA> (n x m)
double *v I ʵ<>ʹ۲<CAB9><DBB2><EFBFBD><EFBFBD><EFBFBD>Ԥ<EFBFBD><D4A4><EFBFBD>۲<EFBFBD><DBB2><EFBFBD><EFBFBD>IJв<C4B2> (measurement - model) (m x 1)
double *R I <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Э<EFBFBD><D0AD><EFBFBD><EFBFBD> (m x m)
int n I ״̬<D7B4><CCAC><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
int m I <20>۲<EFBFBD>ֵ<EFBFBD><D6B5><EFBFBD><EFBFBD>
<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>:
int O (0:ok,<0:error)
*/
extern int filter(double *x, double *P, const double *H, const double *v,
const double *R, int n, int m)
{
double *x_, *xp_, *P_, *Pp_, *H_;
int i, j, k, info, *ix;
/* create list of non-zero states
1<><31>ѡ<EFBFBD><D1A1><EFBFBD><EFBFBD>Ҫ<EFBFBD><D2AA><EFBFBD>µ<EFBFBD>״̬ x <20>Ͷ<EFBFBD>Ӧ<EFBFBD><D3A6> P<><50>H <20><> x_<78><5F>p_<70><5F>H_ <20><>*/
ix = imat(n, 1);
for (i = k = 0; i < n; i++)
if (x[i] != 0.0 && P[i + i * n] > 0.0)
ix[k++] = i;
x_ = mat(k, 1);
xp_ = mat(k, 1);
P_ = mat(k, k);
Pp_ = mat(k, k);
H_ = mat(k, m);
/* compress array by removing zero elements to save computation time */
for (i = 0; i < k; i++)
{
x_[i] = x[ix[i]];
for (j = 0; j < k; j++)
P_[i + j * k] = P[ix[i] + ix[j] * n];
for (j = 0; j < m; j++)
H_[i + j * k] = H[ix[i] + j * n];
}
/* do kalman filter state update on compressed arrays
2<><32><EFBFBD><EFBFBD><EFBFBD><EFBFBD> filter_ <20><><EFBFBD><EFBFBD>kalman<61>˲<EFBFBD><CBB2><EFBFBD><EFBFBD><EFBFBD>*/
info = filter_(x_, P_, H_, v, R, k, m, xp_, Pp_);
/* copy values from compressed arrays back to full arrays
3<><33><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ֵ<EFBFBD>浽 x<><78>P<EFBFBD><50>*/
for (i = 0; i < k; i++)
{
x[ix[i]] = xp_[i];
for (j = 0; j < k; j++)
P[ix[i] + ix[j] * n] = Pp_[i + j * k];
}
free(ix);
free(x_);
free(xp_);
free(P_);
free(Pp_);
free(H_);
return info;
}
/* smoother --------------------------------------------------------------------
* combine forward and backward filters by fixed-interval smoother as follows:
*
* xs=Qs*(Qf^-1*xf+Qb^-1*xb), Qs=(Qf^-1+Qb^-1)^-1)
*
* args : double *xf I forward solutions (n x 1)
* args : double *Qf I forward solutions covariance matrix (n x n)
* double *xb I backward solutions (n x 1)
* double *Qb I backward solutions covariance matrix (n x n)
* int n I number of solutions
* double *xs O smoothed solutions (n x 1)
* double *Qs O smoothed solutions covariance matrix (n x n)
* return : status (0:ok,0>:error)
* notes : see reference [4] 5.2
* matirix stored by column-major order (fortran convention)
*-----------------------------------------------------------------------------*/
extern int smoother(const double *xf, const double *Qf, const double *xb,
const double *Qb, int n, double *xs, double *Qs)
{
double *invQf = mat(n, n), *invQb = mat(n, n), *xx = mat(n, 1);
int i, info = -1;
matcpy(invQf, Qf, n, n);
matcpy(invQb, Qb, n, n);
if (!matinv(invQf, n) && !matinv(invQb, n))
{
for (i = 0; i < n * n; i++)
Qs[i] = invQf[i] + invQb[i];
if (!(info = matinv(Qs, n)))
{
matmul("NN", n, 1, n, 1.0, invQf, xf, 0.0, xx);
matmul("NN", n, 1, n, 1.0, invQb, xb, 1.0, xx);
matmul("NN", n, 1, n, 1.0, Qs, xx, 0.0, xs);
}
}
free(invQf);
free(invQb);
free(xx);
return info;
}
/* print matrix ----------------------------------------------------------------
* print matrix to stdout
* args : double *A I matrix A (n x m)
* int n,m I number of rows and columns of A
* int p,q I total columns, columns under decimal point
* (FILE *fp I output file pointer)
* return : none
* notes : matirix stored by column-major order (fortran convention)
*-----------------------------------------------------------------------------*/
extern void matfprint(const double A[], int n, int m, int p, int q, FILE *fp)
{
int i, j;
for (i = 0; i < n; i++)
{
for (j = 0; j < m; j++)
fprintf(fp, " %*.*f", p, q, A[i + j * n]);
fprintf(fp, "\n");
}
}
extern void matprint(const double A[], int n, int m, int p, int q)
{
matfprint(A, n, m, p, q, stdout);
}
/* string to number ------------------------------------------------------------
* convert substring in string to number
* args : char *s I string ("... nnn.nnn ...")
* int i,n I substring position and width
* return : converted number (0.0:error)
*-----------------------------------------------------------------------------*/
extern double str2num(const char *s, int i, int n)
{
double value;
char str[256], *p = str;
if (i < 0 || (int)strlen(s) < i || (int)sizeof(str) - 1 < n)
return 0.0;
for (s += i; *s && --n >= 0; s++)
*p++ = *s == 'd' || *s == 'D' ? 'E' : *s;
*p = '\0';
return sscanf(str, "%lf", &value) == 1 ? value : 0.0;
}
/* string to time --------------------------------------------------------------
* convert substring in string to gtime_t struct
* args : char *s I string ("... yyyy mm dd hh mm ss ...")
* int i,n I substring position and width
* gtime_t *t O gtime_t struct
* return : status (0:ok,0>:error)
*-----------------------------------------------------------------------------*/
extern int str2time(const char *s, int i, int n, gtime_t *t)
{
double ep[6];
char str[256], *p = str;
if (i < 0 || (int)strlen(s) < i || (int)sizeof(str) - 1 < i)
return -1;
for (s += i; *s && --n >= 0;)
*p++ = *s++;
*p = '\0';
if (sscanf(str, "%lf %lf %lf %lf %lf %lf", ep, ep + 1, ep + 2, ep + 3, ep + 4, ep + 5) < 6)
return -1;
if (ep[0] < 100.0)
ep[0] += ep[0] < 80.0 ? 2000.0 : 1900.0;
*t = epoch2time(ep);
return 0;
}
/* convert calendar day/time to time -------------------------------------------
* convert calendar day/time to gtime_t struct
* args : double *ep I day/time {year,month,day,hour,min,sec}
* return : gtime_t struct
* notes : proper in 1970-2037 or 1970-2099 (64bit time_t)
*-----------------------------------------------------------------------------*/
extern gtime_t epoch2time(const double *ep)
{
const int doy[] = {1, 32, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335};
gtime_t time = {0};
int days, sec, year = (int)ep[0], mon = (int)ep[1], day = (int)ep[2];
if (year < 1970 || 2099 < year || mon < 1 || 12 < mon)
return time;
/* leap year if year%4==0 in 1901-2099 */
days = (year - 1970) * 365 + (year - 1969) / 4 + doy[mon - 1] + day - 2 + (year % 4 == 0 && mon >= 3 ? 1 : 0);
sec = (int)floor(ep[5]);
time.time = (time_t)days * 86400 + (int)ep[3] * 3600 + (int)ep[4] * 60 + sec;
time.sec = ep[5] - sec;
return time;
}
/* time to calendar day/time ---------------------------------------------------
* convert gtime_t struct to calendar day/time
* args : gtime_t t I gtime_t struct
* double *ep O day/time {year,month,day,hour,min,sec}
* return : none
* notes : proper in 1970-2037 or 1970-2099 (64bit time_t)
*-----------------------------------------------------------------------------*/
extern void time2epoch(gtime_t t, double *ep)
{
const int mday[] = {/* # of days in a month */
31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31,
31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
int days, sec, mon, day;
/* leap year if year%4==0 in 1901-2099 */
days = (int)(t.time / 86400);
sec = (int)(t.time - (time_t)days * 86400);
for (day = days % 1461, mon = 0; mon < 48; mon++)
{
if (day >= mday[mon])
day -= mday[mon];
else
break;
}
ep[0] = 1970 + days / 1461 * 4 + mon / 12;
ep[1] = mon % 12 + 1;
ep[2] = day + 1;
ep[3] = sec / 3600;
ep[4] = sec % 3600 / 60;
ep[5] = sec % 60 + t.sec;
}
/* same as above but output limited to n decimals for formatted output */
extern void time2epoch_n(gtime_t t, double *ep, int n)
{
if (n < 0)
n = 0;
else if (n > 12)
n = 12;
if (1.0 - t.sec < 0.5 / pow(10.0, n))
{
t.time++;
t.sec = 0.0;
};
time2epoch(t, ep);
}
/* gps time to time ------------------------------------------------------------
* convert week and tow in gps time to gtime_t struct
* args : int week I week number in gps time
* double sec I time of week in gps time (s)
* return : gtime_t struct
*-----------------------------------------------------------------------------*/
extern gtime_t gpst2time(int week, double sec)
{
gtime_t t = epoch2time(gpst0);
if (sec < -1E9 || 1E9 < sec)
sec = 0.0;
t.time += (time_t)86400 * 7 * week + (int)sec;
t.sec = sec - (int)sec;
return t;
}
/* time to gps time ------------------------------------------------------------
* convert gtime_t struct to week and tow in gps time
* args : gtime_t t I gtime_t struct
* int *week IO week number in gps time (NULL: no output)
* return : time of week in gps time (s)
*-----------------------------------------------------------------------------*/
extern double time2gpst(gtime_t t, int *week)
{
gtime_t t0 = epoch2time(gpst0);
time_t sec = t.time - t0.time;
int w = (int)(sec / (86400 * 7));
if (week)
*week = w;
return (double)(sec - (double)w * 86400 * 7) + t.sec;
}
/* galileo system time to time -------------------------------------------------
* convert week and tow in galileo system time (gst) to gtime_t struct
* args : int week I week number in gst
* double sec I time of week in gst (s)
* return : gtime_t struct
*-----------------------------------------------------------------------------*/
extern gtime_t gst2time(int week, double sec)
{
gtime_t t = epoch2time(gst0);
if (sec < -1E9 || 1E9 < sec)
sec = 0.0;
t.time += (time_t)86400 * 7 * week + (int)sec;
t.sec = sec - (int)sec;
return t;
}
/* time to galileo system time -------------------------------------------------
* convert gtime_t struct to week and tow in galileo system time (gst)
* args : gtime_t t I gtime_t struct
* int *week IO week number in gst (NULL: no output)
* return : time of week in gst (s)
*-----------------------------------------------------------------------------*/
extern double time2gst(gtime_t t, int *week)
{
gtime_t t0 = epoch2time(gst0);
time_t sec = t.time - t0.time;
int w = (int)(sec / (86400 * 7));
if (week)
*week = w;
return (double)(sec - (double)w * 86400 * 7) + t.sec;
}
/* beidou time (bdt) to time ---------------------------------------------------
* convert week and tow in beidou time (bdt) to gtime_t struct
* args : int week I week number in bdt
* double sec I time of week in bdt (s)
* return : gtime_t struct
*-----------------------------------------------------------------------------*/
extern gtime_t bdt2time(int week, double sec)
{
gtime_t t = epoch2time(bdt0);
if (sec < -1E9 || 1E9 < sec)
sec = 0.0;
t.time += (time_t)86400 * 7 * week + (int)sec;
t.sec = sec - (int)sec;
return t;
}
/* time to beidouo time (bdt) --------------------------------------------------
* convert gtime_t struct to week and tow in beidou time (bdt)
* args : gtime_t t I gtime_t struct
* int *week IO week number in bdt (NULL: no output)
* return : time of week in bdt (s)
*-----------------------------------------------------------------------------*/
extern double time2bdt(gtime_t t, int *week)
{
gtime_t t0 = epoch2time(bdt0);
time_t sec = t.time - t0.time;
int w = (int)(sec / (86400 * 7));
if (week)
*week = w;
return (double)(sec - (double)w * 86400 * 7) + t.sec;
}
/* add time --------------------------------------------------------------------
* add time to gtime_t struct
* args : gtime_t t I gtime_t struct
* double sec I time to add (s)
* return : gtime_t struct (t+sec)
*-----------------------------------------------------------------------------*/
extern gtime_t timeadd(gtime_t t, double sec)
{
double tt;
t.sec += sec;
tt = floor(t.sec);
t.time += (int)tt;
t.sec -= tt;
return t;
}
/* time difference -------------------------------------------------------------
* difference between gtime_t structs
* args : gtime_t t1,t2 I gtime_t structs
* return : time difference (t1-t2) (s)
*-----------------------------------------------------------------------------*/
extern double timediff(gtime_t t1, gtime_t t2)
{
return difftime(t1.time, t2.time) + t1.sec - t2.sec;
}
/* get current time in utc -----------------------------------------------------
* get current time in utc
* args : none
* return : current time in utc
*-----------------------------------------------------------------------------*/
static double timeoffset_ = 0.0; /* time offset (s) */
extern gtime_t timeget(void)
{
gtime_t now;
now.time =time(RT_NULL);
now.sec =time(RT_NULL);
return timeadd(now, timeoffset_);
}
/* set current time in utc -----------------------------------------------------
* set current time in utc
* args : gtime_t I current time in utc
* return : none
* notes : just set time offset between cpu time and current time
* the time offset is reflected to only timeget()
* not reentrant
*-----------------------------------------------------------------------------*/
extern void timeset(gtime_t t)
{
timeoffset_ += timediff(t, timeget());
}
/* reset current time ----------------------------------------------------------
* reset current time
* args : none
* return : none
*-----------------------------------------------------------------------------*/
extern void timereset(void)
{
timeoffset_ = 0.0;
}
/* read leap seconds table by text -------------------------------------------*/
static int read_leaps_text(FILE *fp)
{
char buff[256], *p;
int i, n = 0, ep[6], ls;
rewind(fp);
while (fgets(buff, sizeof(buff), fp) && n < MAXLEAPS)
{
if ((p = strchr(buff, '#')))
*p = '\0';
if (sscanf(buff, "%d %d %d %d %d %d %d", ep, ep + 1, ep + 2, ep + 3, ep + 4, ep + 5,
&ls) < 7)
continue;
for (i = 0; i < 6; i++)
leaps[n][i] = ep[i];
leaps[n++][6] = ls;
}
return n;
}
/* read leap seconds table by usno -------------------------------------------*/
static int read_leaps_usno(FILE *fp)
{
static const char *months[] = {
"JAN", "FEB", "MAR", "APR", "MAY", "JUN", "JUL", "AUG", "SEP", "OCT", "NOV", "DEC"};
double jd, tai_utc;
char buff[256], month[32] = {'\0'}, ls[MAXLEAPS][7] = {{0}};
int i, j, y, m, d, n = 0;
rewind(fp);
while (fgets(buff, sizeof(buff), fp) && n < MAXLEAPS)
{
if (sscanf(buff, "%d %s %d =JD %lf TAI-UTC= %lf", &y, month, &d, &jd,
&tai_utc) < 5)
continue;
if (y < 1980)
continue;
for (m = 1; m <= 12; m++)
if (!strcmp(months[m - 1], month))
break;
if (m >= 13)
continue;
ls[n][0] = y;
ls[n][1] = m;
ls[n][2] = d;
ls[n++][6] = (char)(19.0 - tai_utc);
}
for (i = 0; i < n; i++)
for (j = 0; j < 7; j++)
{
leaps[i][j] = ls[n - i - 1][j];
}
return n;
}
/* read leap seconds table -----------------------------------------------------
* read leap seconds table
* args : char *file I leap seconds table file
* return : status (1:ok,0:error)
* notes : The leap second table should be as follows or leapsec.dat provided
* by USNO.
* (1) The records in the table file cosist of the following fields:
* year month day hour min sec UTC-GPST(s)
* (2) The date and time indicate the start UTC time for the UTC-GPST
* (3) The date and time should be descending order.
*-----------------------------------------------------------------------------*/
extern int read_leaps(const char *file)
{
FILE *fp;
int i, n;
if (!(fp = fopen(file, "r")))
return 0;
/* read leap seconds table by text or usno */
if (!(n = read_leaps_text(fp)) && !(n = read_leaps_usno(fp)))
{
fclose(fp);
return 0;
}
for (i = 0; i < 7; i++)
leaps[n][i] = 0.0;
fclose(fp);
return 1;
}
/* gpstime to utc --------------------------------------------------------------
* convert gpstime to utc considering leap seconds
* args : gtime_t t I time expressed in gpstime
* return : time expressed in utc
* notes : ignore slight time offset under 100 ns
*-----------------------------------------------------------------------------*/
extern gtime_t gpst2utc(gtime_t t)
{
gtime_t tu;
int i;
for (i = 0; leaps[i][0] > 0; i++)
{
tu = timeadd(t, leaps[i][6]);
if (timediff(tu, epoch2time(leaps[i])) >= 0.0)
return tu;
}
return t;
}
/* utc to gpstime --------------------------------------------------------------
* convert utc to gpstime considering leap seconds
* args : gtime_t t I time expressed in utc
* return : time expressed in gpstime
* notes : ignore slight time offset under 100 ns
*-----------------------------------------------------------------------------*/
extern gtime_t utc2gpst(gtime_t t)
{
int i;
for (i = 0; leaps[i][0] > 0; i++)
{
if (timediff(t, epoch2time(leaps[i])) >= 0.0)
return timeadd(t, -leaps[i][6]);
}
return t;
}
/* gpstime to bdt --------------------------------------------------------------
* convert gpstime to bdt (beidou navigation satellite system time)
* args : gtime_t t I time expressed in gpstime
* return : time expressed in bdt
* notes : ref [8] 3.3, 2006/1/1 00:00 BDT = 2006/1/1 00:00 UTC
* no leap seconds in BDT
* ignore slight time offset under 100 ns
*-----------------------------------------------------------------------------*/
extern gtime_t gpst2bdt(gtime_t t)
{
return timeadd(t, -14.0);
}
/* bdt to gpstime --------------------------------------------------------------
* convert bdt (beidou navigation satellite system time) to gpstime
* args : gtime_t t I time expressed in bdt
* return : time expressed in gpstime
* notes : see gpst2bdt()
*-----------------------------------------------------------------------------*/
extern gtime_t bdt2gpst(gtime_t t)
{
return timeadd(t, 14.0);
}
/* time to day and sec -------------------------------------------------------*/
static double time2sec(gtime_t time, gtime_t *day)
{
double ep[6], sec;
time2epoch(time, ep);
sec = ep[3] * 3600.0 + ep[4] * 60.0 + ep[5];
ep[3] = ep[4] = ep[5] = 0.0;
*day = epoch2time(ep);
return sec;
}
/* utc to gmst -----------------------------------------------------------------
* convert utc to gmst (Greenwich mean sidereal time)
* args : gtime_t t I time expressed in utc
* double ut1_utc I UT1-UTC (s)
* return : gmst (rad)
*-----------------------------------------------------------------------------*/
extern double utc2gmst(gtime_t t, double ut1_utc)
{
const double ep2000[] = {2000, 1, 1, 12, 0, 0};
gtime_t tut, tut0;
double ut, t1, t2, t3, gmst0, gmst;
tut = timeadd(t, ut1_utc);
ut = time2sec(tut, &tut0);
t1 = timediff(tut0, epoch2time(ep2000)) / 86400.0 / 36525.0;
t2 = t1 * t1;
t3 = t2 * t1;
gmst0 = 24110.54841 + 8640184.812866 * t1 + 0.093104 * t2 - 6.2E-6 * t3;
gmst = gmst0 + 1.002737909350795 * ut;
return fmod(gmst, 86400.0) * PI / 43200.0; /* 0 <= gmst <= 2*PI */
}
/* time to string --------------------------------------------------------------
* convert gtime_t struct to string
* args : gtime_t t I gtime_t struct
* char *s O string ("yyyy/mm/dd hh:mm:ss.ssss")
* int n I number of decimals
* return : none
*-----------------------------------------------------------------------------*/
extern void time2str(gtime_t t, char *s, int n)
{
double ep[6];
if (n < 0)
n = 0;
else if (n > 12)
n = 12;
if (1.0 - t.sec < 0.5 / pow(10.0, n))
{
t.time++;
t.sec = 0.0;
};
time2epoch(t, ep);
sprintf(s, "%04.0f/%02.0f/%02.0f %02.0f:%02.0f:%0*.*f", ep[0], ep[1], ep[2],
ep[3], ep[4], n <= 0 ? 2 : n + 3, n <= 0 ? 0 : n, ep[5]);
}
/* get time string -------------------------------------------------------------
* get time string
* args : gtime_t t I gtime_t struct
* int n I number of decimals
* return : time string
* notes : not reentrant, do not use multiple in a function
*-----------------------------------------------------------------------------*/
extern char *time_str(gtime_t t, int n)
{
static char buff[64];
time2str(t, buff, n);
return buff;
}
/* time to day of year ---------------------------------------------------------
* convert time to day of year
* args : gtime_t t I gtime_t struct
* return : day of year (days)
*-----------------------------------------------------------------------------*/
extern double time2doy(gtime_t t)
{
double ep[6];
time2epoch(t, ep);
ep[1] = ep[2] = 1.0;
ep[3] = ep[4] = ep[5] = 0.0;
return timediff(t, epoch2time(ep)) / 86400.0 + 1.0;
}
/* adjust gps week number ------------------------------------------------------
* adjust gps week number using cpu time
* args : int week I not-adjusted gps week number (0-1023)
* return : adjusted gps week number
*-----------------------------------------------------------------------------*/
extern int adjgpsweek(int week)
{
int w;
(void)time2gpst(utc2gpst(timeget()), &w);
if (w < 1560)
w = 1560; /* use 2009/12/1 if time is earlier than 2009/12/1 */
return week + (w - week + 1) / 1024 * 1024;
}
/* get tick time ---------------------------------------------------------------
* get current tick in ms
* args : none
* return : current tick in ms
*-----------------------------------------------------------------------------*/
extern uint32_t tickget(void)
{
return rt_tick_get();
}
/* sleep ms --------------------------------------------------------------------
* sleep ms
* args : int ms I miliseconds to sleep (<0:no sleep)
* return : none
*-----------------------------------------------------------------------------*/
extern void sleepms(int ms)
{
rt_thread_sleep((rt_tick_t)ms);
}
/* convert degree to deg-min-sec -----------------------------------------------
* convert degree to degree-minute-second
* args : double deg I degree
* double *dms O degree-minute-second {deg,min,sec}
* int ndec I number of decimals of second
* return : none
*-----------------------------------------------------------------------------*/
extern void deg2dms(double deg, double *dms, int ndec)
{
double sign = deg < 0.0 ? -1.0 : 1.0, a = fabs(deg);
double unit = pow(0.1, ndec);
dms[0] = floor(a);
a = (a - dms[0]) * 60.0;
dms[1] = floor(a);
a = (a - dms[1]) * 60.0;
dms[2] = floor(a / unit + 0.5) * unit;
if (dms[2] >= 60.0)
{
dms[2] = 0.0;
dms[1] += 1.0;
if (dms[1] >= 60.0)
{
dms[1] = 0.0;
dms[0] += 1.0;
}
}
dms[0] *= sign;
}
/* convert deg-min-sec to degree -----------------------------------------------
* convert degree-minute-second to degree
* args : double *dms I degree-minute-second {deg,min,sec}
* return : degree
*-----------------------------------------------------------------------------*/
extern double dms2deg(const double *dms)
{
double sign = dms[0] < 0.0 ? -1.0 : 1.0;
return sign * (fabs(dms[0]) + dms[1] / 60.0 + dms[2] / 3600.0);
}
/* transform ecef to geodetic postion ------------------------------------------
* transform ecef position to geodetic position
* args : double *r I ecef position {x,y,z} (m)
* double *pos O geodetic position {lat,lon,h} (rad,m)
* return : none
* notes : WGS84, ellipsoidal height
*-----------------------------------------------------------------------------*/
extern void ecef2pos(const double *r, double *pos)
{
double e2 = FE_WGS84 * (2.0 - FE_WGS84), r2 = dot(r, r, 2), z, zk, v = RE_WGS84, sinp;
for (z = r[2], zk = 0.0; fabs(z - zk) >= 1E-4;)
{
zk = z;
sinp = z / sqrt(r2 + z * z);
v = RE_WGS84 / sqrt(1.0 - e2 * sinp * sinp);
z = r[2] + v * e2 * sinp;
}
pos[0] = r2 > 1E-12 ? atan(z / sqrt(r2)) : (r[2] > 0.0 ? PI / 2.0 : -PI / 2.0);
pos[1] = r2 > 1E-12 ? atan2(r[1], r[0]) : 0.0;
pos[2] = sqrt(r2 + z * z) - v;
}
/* transform geodetic to ecef position -----------------------------------------
* transform geodetic position to ecef position
* args : double *pos I geodetic position {lat,lon,h} (rad,m)
* double *r O ecef position {x,y,z} (m)
* return : none
* notes : WGS84, ellipsoidal height
*-----------------------------------------------------------------------------*/
extern void pos2ecef(const double *pos, double *r)
{
double sinp = sin(pos[0]), cosp = cos(pos[0]), sinl = sin(pos[1]), cosl = cos(pos[1]);
double e2 = FE_WGS84 * (2.0 - FE_WGS84), v = RE_WGS84 / sqrt(1.0 - e2 * sinp * sinp);
r[0] = (v + pos[2]) * cosp * cosl;
r[1] = (v + pos[2]) * cosp * sinl;
r[2] = (v * (1.0 - e2) + pos[2]) * sinp;
}
/* ecef to local coordinate transfromation matrix ------------------------------
* compute ecef to local coordinate transfromation matrix
* args : double *pos I geodetic position {lat,lon} (rad)
* double *E O ecef to local coord transformation matrix (3x3)
* return : none
* notes : matirix stored by column-major order (fortran convention)
*-----------------------------------------------------------------------------*/
extern void xyz2enu(const double *pos, double *E)
{
double sinp = sin(pos[0]), cosp = cos(pos[0]), sinl = sin(pos[1]), cosl = cos(pos[1]);
E[0] = -sinl;
E[1] = -sinp * cosl;
E[2] = cosp * cosl;
E[3] = cosl;
E[4] = -sinp * sinl;
E[5] = cosp * sinl;
E[6] = 0.0;
E[7] = cosp;
E[8] = sinp;
}
/* transform ecef vector to local tangental coordinate -------------------------
* transform ecef vector to local tangental coordinate
* args : double *pos I geodetic position {lat,lon} (rad)
* double *r I vector in ecef coordinate {x,y,z}
* double *e O vector in local tangental coordinate {e,n,u}
* return : none
*-----------------------------------------------------------------------------*/
extern void ecef2enu(const double *pos, const double *r, double *e)
{
double E[9];
xyz2enu(pos, E);
matmul("NN", 3, 1, 3, 1.0, E, r, 0.0, e);
}
/* transform local vector to ecef coordinate -----------------------------------
* transform local tangental coordinate vector to ecef
* args : double *pos I geodetic position {lat,lon} (rad)
* double *e I vector in local tangental coordinate {e,n,u}
* double *r O vector in ecef coordinate {x,y,z}
* return : none
*-----------------------------------------------------------------------------*/
extern void enu2ecef(const double *pos, const double *e, double *r)
{
double E[9];
xyz2enu(pos, E);
matmul("TN", 3, 1, 3, 1.0, E, e, 0.0, r);
}
/* transform covariance to local tangental coordinate --------------------------
* transform ecef covariance to local tangental coordinate
* args : double *pos I geodetic position {lat,lon} (rad)
* double *P I covariance in ecef coordinate
* double *Q O covariance in local tangental coordinate
* return : none
*-----------------------------------------------------------------------------*/
extern void covenu(const double *pos, const double *P, double *Q)
{
double E[9], EP[9];
xyz2enu(pos, E);
matmul("NN", 3, 3, 3, 1.0, E, P, 0.0, EP);
matmul("NT", 3, 3, 3, 1.0, EP, E, 0.0, Q);
}
/* transform local enu coordinate covariance to xyz-ecef -----------------------
* transform local enu covariance to xyz-ecef coordinate
* args : double *pos I geodetic position {lat,lon} (rad)
* double *Q I covariance in local enu coordinate
* double *P O covariance in xyz-ecef coordinate
* return : none
*-----------------------------------------------------------------------------*/
extern void covecef(const double *pos, const double *Q, double *P)
{
double E[9], EQ[9];
xyz2enu(pos, E);
matmul("TN", 3, 3, 3, 1.0, E, Q, 0.0, EQ);
matmul("NN", 3, 3, 3, 1.0, EQ, E, 0.0, P);
}
/* coordinate rotation matrix ------------------------------------------------*/
#define Rx(t, X) \
do \
{ \
(X)[0] = 1.0; \
(X)[1] = (X)[2] = (X)[3] = (X)[6] = 0.0; \
(X)[4] = (X)[8] = cos(t); \
(X)[7] = sin(t); \
(X)[5] = -(X)[7]; \
} while (0)
#define Ry(t, X) \
do \
{ \
(X)[4] = 1.0; \
(X)[1] = (X)[3] = (X)[5] = (X)[7] = 0.0; \
(X)[0] = (X)[8] = cos(t); \
(X)[2] = sin(t); \
(X)[6] = -(X)[2]; \
} while (0)
#define Rz(t, X) \
do \
{ \
(X)[8] = 1.0; \
(X)[2] = (X)[5] = (X)[6] = (X)[7] = 0.0; \
(X)[0] = (X)[4] = cos(t); \
(X)[3] = sin(t); \
(X)[1] = -(X)[3]; \
} while (0)
/* astronomical arguments: f={l,l',F,D,OMG} (rad) ----------------------------*/
static void ast_args(double t, double *f)
{
static const double fc[][5] = {/* coefficients for iau 1980 nutation */
{134.96340251, 1717915923.2178, 31.8792, 0.051635, -0.00024470},
{357.52910918, 129596581.0481, -0.5532, 0.000136, -0.00001149},
{93.27209062, 1739527262.8478, -12.7512, -0.001037, 0.00000417},
{297.85019547, 1602961601.2090, -6.3706, 0.006593, -0.00003169},
{125.04455501, -6962890.2665, 7.4722, 0.007702, -0.00005939}};
double tt[4];
int i, j;
for (tt[0] = t, i = 1; i < 4; i++)
tt[i] = tt[i - 1] * t;
for (i = 0; i < 5; i++)
{
f[i] = fc[i][0] * 3600.0;
for (j = 0; j < 4; j++)
f[i] += fc[i][j + 1] * tt[j];
f[i] = fmod(f[i] * AS2R, 2.0 * PI);
}
}
/* iau 1980 nutation ---------------------------------------------------------*/
static void nut_iau1980(double t, const double *f, double *dpsi, double *deps)
{
static const double nut[106][10] = {
{0, 0, 0, 0, 1, -6798.4, -171996, -174.2, 92025, 8.9},
{0, 0, 2, -2, 2, 182.6, -13187, -1.6, 5736, -3.1},
{0, 0, 2, 0, 2, 13.7, -2274, -0.2, 977, -0.5},
{0, 0, 0, 0, 2, -3399.2, 2062, 0.2, -895, 0.5},
{0, -1, 0, 0, 0, -365.3, -1426, 3.4, 54, -0.1},
{1, 0, 0, 0, 0, 27.6, 712, 0.1, -7, 0.0},
{0, 1, 2, -2, 2, 121.7, -517, 1.2, 224, -0.6},
{0, 0, 2, 0, 1, 13.6, -386, -0.4, 200, 0.0},
{1, 0, 2, 0, 2, 9.1, -301, 0.0, 129, -0.1},
{0, -1, 2, -2, 2, 365.2, 217, -0.5, -95, 0.3},
{-1, 0, 0, 2, 0, 31.8, 158, 0.0, -1, 0.0},
{0, 0, 2, -2, 1, 177.8, 129, 0.1, -70, 0.0},
{-1, 0, 2, 0, 2, 27.1, 123, 0.0, -53, 0.0},
{1, 0, 0, 0, 1, 27.7, 63, 0.1, -33, 0.0},
{0, 0, 0, 2, 0, 14.8, 63, 0.0, -2, 0.0},
{-1, 0, 2, 2, 2, 9.6, -59, 0.0, 26, 0.0},
{-1, 0, 0, 0, 1, -27.4, -58, -0.1, 32, 0.0},
{1, 0, 2, 0, 1, 9.1, -51, 0.0, 27, 0.0},
{-2, 0, 0, 2, 0, -205.9, -48, 0.0, 1, 0.0},
{-2, 0, 2, 0, 1, 1305.5, 46, 0.0, -24, 0.0},
{0, 0, 2, 2, 2, 7.1, -38, 0.0, 16, 0.0},
{2, 0, 2, 0, 2, 6.9, -31, 0.0, 13, 0.0},
{2, 0, 0, 0, 0, 13.8, 29, 0.0, -1, 0.0},
{1, 0, 2, -2, 2, 23.9, 29, 0.0, -12, 0.0},
{0, 0, 2, 0, 0, 13.6, 26, 0.0, -1, 0.0},
{0, 0, 2, -2, 0, 173.3, -22, 0.0, 0, 0.0},
{-1, 0, 2, 0, 1, 27.0, 21, 0.0, -10, 0.0},
{0, 2, 0, 0, 0, 182.6, 17, -0.1, 0, 0.0},
{0, 2, 2, -2, 2, 91.3, -16, 0.1, 7, 0.0},
{-1, 0, 0, 2, 1, 32.0, 16, 0.0, -8, 0.0},
{0, 1, 0, 0, 1, 386.0, -15, 0.0, 9, 0.0},
{1, 0, 0, -2, 1, -31.7, -13, 0.0, 7, 0.0},
{0, -1, 0, 0, 1, -346.6, -12, 0.0, 6, 0.0},
{2, 0, -2, 0, 0, -1095.2, 11, 0.0, 0, 0.0},
{-1, 0, 2, 2, 1, 9.5, -10, 0.0, 5, 0.0},
{1, 0, 2, 2, 2, 5.6, -8, 0.0, 3, 0.0},
{0, -1, 2, 0, 2, 14.2, -7, 0.0, 3, 0.0},
{0, 0, 2, 2, 1, 7.1, -7, 0.0, 3, 0.0},
{1, 1, 0, -2, 0, -34.8, -7, 0.0, 0, 0.0},
{0, 1, 2, 0, 2, 13.2, 7, 0.0, -3, 0.0},
{-2, 0, 0, 2, 1, -199.8, -6, 0.0, 3, 0.0},
{0, 0, 0, 2, 1, 14.8, -6, 0.0, 3, 0.0},
{2, 0, 2, -2, 2, 12.8, 6, 0.0, -3, 0.0},
{1, 0, 0, 2, 0, 9.6, 6, 0.0, 0, 0.0},
{1, 0, 2, -2, 1, 23.9, 6, 0.0, -3, 0.0},
{0, 0, 0, -2, 1, -14.7, -5, 0.0, 3, 0.0},
{0, -1, 2, -2, 1, 346.6, -5, 0.0, 3, 0.0},
{2, 0, 2, 0, 1, 6.9, -5, 0.0, 3, 0.0},
{1, -1, 0, 0, 0, 29.8, 5, 0.0, 0, 0.0},
{1, 0, 0, -1, 0, 411.8, -4, 0.0, 0, 0.0},
{0, 0, 0, 1, 0, 29.5, -4, 0.0, 0, 0.0},
{0, 1, 0, -2, 0, -15.4, -4, 0.0, 0, 0.0},
{1, 0, -2, 0, 0, -26.9, 4, 0.0, 0, 0.0},
{2, 0, 0, -2, 1, 212.3, 4, 0.0, -2, 0.0},
{0, 1, 2, -2, 1, 119.6, 4, 0.0, -2, 0.0},
{1, 1, 0, 0, 0, 25.6, -3, 0.0, 0, 0.0},
{1, -1, 0, -1, 0, -3232.9, -3, 0.0, 0, 0.0},
{-1, -1, 2, 2, 2, 9.8, -3, 0.0, 1, 0.0},
{0, -1, 2, 2, 2, 7.2, -3, 0.0, 1, 0.0},
{1, -1, 2, 0, 2, 9.4, -3, 0.0, 1, 0.0},
{3, 0, 2, 0, 2, 5.5, -3, 0.0, 1, 0.0},
{-2, 0, 2, 0, 2, 1615.7, -3, 0.0, 1, 0.0},
{1, 0, 2, 0, 0, 9.1, 3, 0.0, 0, 0.0},
{-1, 0, 2, 4, 2, 5.8, -2, 0.0, 1, 0.0},
{1, 0, 0, 0, 2, 27.8, -2, 0.0, 1, 0.0},
{-1, 0, 2, -2, 1, -32.6, -2, 0.0, 1, 0.0},
{0, -2, 2, -2, 1, 6786.3, -2, 0.0, 1, 0.0},
{-2, 0, 0, 0, 1, -13.7, -2, 0.0, 1, 0.0},
{2, 0, 0, 0, 1, 13.8, 2, 0.0, -1, 0.0},
{3, 0, 0, 0, 0, 9.2, 2, 0.0, 0, 0.0},
{1, 1, 2, 0, 2, 8.9, 2, 0.0, -1, 0.0},
{0, 0, 2, 1, 2, 9.3, 2, 0.0, -1, 0.0},
{1, 0, 0, 2, 1, 9.6, -1, 0.0, 0, 0.0},
{1, 0, 2, 2, 1, 5.6, -1, 0.0, 1, 0.0},
{1, 1, 0, -2, 1, -34.7, -1, 0.0, 0, 0.0},
{0, 1, 0, 2, 0, 14.2, -1, 0.0, 0, 0.0},
{0, 1, 2, -2, 0, 117.5, -1, 0.0, 0, 0.0},
{0, 1, -2, 2, 0, -329.8, -1, 0.0, 0, 0.0},
{1, 0, -2, 2, 0, 23.8, -1, 0.0, 0, 0.0},
{1, 0, -2, -2, 0, -9.5, -1, 0.0, 0, 0.0},
{1, 0, 2, -2, 0, 32.8, -1, 0.0, 0, 0.0},
{1, 0, 0, -4, 0, -10.1, -1, 0.0, 0, 0.0},
{2, 0, 0, -4, 0, -15.9, -1, 0.0, 0, 0.0},
{0, 0, 2, 4, 2, 4.8, -1, 0.0, 0, 0.0},
{0, 0, 2, -1, 2, 25.4, -1, 0.0, 0, 0.0},
{-2, 0, 2, 4, 2, 7.3, -1, 0.0, 1, 0.0},
{2, 0, 2, 2, 2, 4.7, -1, 0.0, 0, 0.0},
{0, -1, 2, 0, 1, 14.2, -1, 0.0, 0, 0.0},
{0, 0, -2, 0, 1, -13.6, -1, 0.0, 0, 0.0},
{0, 0, 4, -2, 2, 12.7, 1, 0.0, 0, 0.0},
{0, 1, 0, 0, 2, 409.2, 1, 0.0, 0, 0.0},
{1, 1, 2, -2, 2, 22.5, 1, 0.0, -1, 0.0},
{3, 0, 2, -2, 2, 8.7, 1, 0.0, 0, 0.0},
{-2, 0, 2, 2, 2, 14.6, 1, 0.0, -1, 0.0},
{-1, 0, 0, 0, 2, -27.3, 1, 0.0, -1, 0.0},
{0, 0, -2, 2, 1, -169.0, 1, 0.0, 0, 0.0},
{0, 1, 2, 0, 1, 13.1, 1, 0.0, 0, 0.0},
{-1, 0, 4, 0, 2, 9.1, 1, 0.0, 0, 0.0},
{2, 1, 0, -2, 0, 131.7, 1, 0.0, 0, 0.0},
{2, 0, 0, 2, 0, 7.1, 1, 0.0, 0, 0.0},
{2, 0, 2, -2, 1, 12.8, 1, 0.0, -1, 0.0},
{2, 0, -2, 0, 1, -943.2, 1, 0.0, 0, 0.0},
{1, -1, 0, -2, 0, -29.3, 1, 0.0, 0, 0.0},
{-1, 0, 0, 1, 1, -388.3, 1, 0.0, 0, 0.0},
{-1, -1, 0, 2, 1, 35.0, 1, 0.0, 0, 0.0},
{0, 1, 0, 1, 0, 27.3, 1, 0.0, 0, 0.0}};
double ang;
int i, j;
*dpsi = *deps = 0.0;
for (i = 0; i < 106; i++)
{
ang = 0.0;
for (j = 0; j < 5; j++)
ang += nut[i][j] * f[j];
*dpsi += (nut[i][6] + nut[i][7] * t) * sin(ang);
*deps += (nut[i][8] + nut[i][9] * t) * cos(ang);
}
*dpsi *= 1E-4 * AS2R; /* 0.1 mas -> rad */
*deps *= 1E-4 * AS2R;
}
/* eci to ecef transformation matrix -------------------------------------------
* compute eci to ecef transformation matrix
* args : gtime_t tutc I time in utc
* double *erpv I erp values {xp,yp,ut1_utc,lod} (rad,rad,s,s/d)
* double *U O eci to ecef transformation matrix (3 x 3)
* double *gmst IO greenwich mean sidereal time (rad)
* (NULL: no output)
* return : none
* note : see ref [3] chap 5
* not thread-safe
*-----------------------------------------------------------------------------*/
extern void eci2ecef(gtime_t tutc, const double *erpv, double *U, double *gmst)
{
const double ep2000[] = {2000, 1, 1, 12, 0, 0};
static gtime_t tutc_;
static double U_[9], gmst_;
gtime_t tgps;
double eps, ze, th, z, t, t2, t3, dpsi, deps, gast, f[5];
double R1[9], R2[9], R3[9], R[9], W[9], N[9], P[9], NP[9];
int i;
trace(4, "eci2ecef: tutc=%s\n", time_str(tutc, 3));
if (fabs(timediff(tutc, tutc_)) < 0.01)
{ /* read cache */
for (i = 0; i < 9; i++)
U[i] = U_[i];
if (gmst)
*gmst = gmst_;
return;
}
tutc_ = tutc;
/* terrestrial time */
tgps = utc2gpst(tutc_);
t = (timediff(tgps, epoch2time(ep2000)) + 19.0 + 32.184) / 86400.0 / 36525.0;
t2 = t * t;
t3 = t2 * t;
/* astronomical arguments */
ast_args(t, f);
/* iau 1976 precession */
ze = (2306.2181 * t + 0.30188 * t2 + 0.017998 * t3) * AS2R;
th = (2004.3109 * t - 0.42665 * t2 - 0.041833 * t3) * AS2R;
z = (2306.2181 * t + 1.09468 * t2 + 0.018203 * t3) * AS2R;
eps = (84381.448 - 46.8150 * t - 0.00059 * t2 + 0.001813 * t3) * AS2R;
Rz(-z, R1);
Ry(th, R2);
Rz(-ze, R3);
matmul("NN", 3, 3, 3, 1.0, R1, R2, 0.0, R);
matmul("NN", 3, 3, 3, 1.0, R, R3, 0.0, P); /* P=Rz(-z)*Ry(th)*Rz(-ze) */
/* iau 1980 nutation */
nut_iau1980(t, f, &dpsi, &deps);
Rx(-eps - deps, R1);
Rz(-dpsi, R2);
Rx(eps, R3);
matmul("NN", 3, 3, 3, 1.0, R1, R2, 0.0, R);
matmul("NN", 3, 3, 3, 1.0, R, R3, 0.0, N); /* N=Rx(-eps)*Rz(-dspi)*Rx(eps) */
/* greenwich aparent sidereal time (rad) */
gmst_ = utc2gmst(tutc_, erpv[2]);
gast = gmst_ + dpsi * cos(eps);
gast += (0.00264 * sin(f[4]) + 0.000063 * sin(2.0 * f[4])) * AS2R;
/* eci to ecef transformation matrix */
Ry(-erpv[0], R1);
Rx(-erpv[1], R2);
Rz(gast, R3);
matmul("NN", 3, 3, 3, 1.0, R1, R2, 0.0, W);
matmul("NN", 3, 3, 3, 1.0, W, R3, 0.0, R); /* W=Ry(-xp)*Rx(-yp) */
matmul("NN", 3, 3, 3, 1.0, N, P, 0.0, NP);
matmul("NN", 3, 3, 3, 1.0, R, NP, 0.0, U_); /* U=W*Rz(gast)*N*P */
for (i = 0; i < 9; i++)
U[i] = U_[i];
if (gmst)
*gmst = gmst_;
trace(5, "gmst=%.12f gast=%.12f\n", gmst_, gast);
trace(5, "P=\n");
tracemat(5, P, 3, 3, 15, 12);
trace(5, "N=\n");
tracemat(5, N, 3, 3, 15, 12);
trace(5, "W=\n");
tracemat(5, W, 3, 3, 15, 12);
trace(5, "U=\n");
tracemat(5, U, 3, 3, 15, 12);
}
/* decode antenna parameter field --------------------------------------------*/
static int decodef(char *p, int n, double *v)
{
int i;
for (i = 0; i < n; i++)
v[i] = 0.0;
for (i = 0, p = strtok(p, " "); p && i < n; p = strtok(NULL, " "))
{
v[i++] = atof(p) * 1E-3;
}
return i;
}
/* add antenna parameter -----------------------------------------------------*/
// static void addpcv(const pcv_t *pcv, pcvs_t *pcvs)
//{
// pcv_t *pcvs_pcv;
//
// if (pcvs->nmax<=pcvs->n) {
// pcvs->nmax+=256;
// if (!(pcvs_pcv=(pcv_t *)realloc(pcvs->pcv,sizeof(pcv_t)*pcvs->nmax))) {
// trace(1,"addpcv: memory allocation error\n");
// free(pcvs->pcv); pcvs->pcv=NULL; pcvs->n=pcvs->nmax=0;
// return;
// }
// pcvs->pcv=pcvs_pcv;
// }
// pcvs->pcv[pcvs->n++]=*pcv;
// }
/* read ngs antenna parameter file -------------------------------------------*/
// static int readngspcv(const char *file, pcvs_t *pcvs)
//{
// FILE *fp;
// static const pcv_t pcv0={0};
// pcv_t pcv;
// double neu[3];
// int n=0;
// char buff[256];
//
// if (!(fp=fopen(file,"r"))) {
// trace(2,"ngs pcv file open error: %s\n",file);
// return 0;
// }
// while (fgets(buff,sizeof(buff),fp)) {
//
// if (strlen(buff)>=62&&buff[61]=='|') continue;
//
// if (buff[0]!=' ') n=0; /* start line */
// if (++n==1) {
// pcv=pcv0;
// strncpy(pcv.type,buff,61); pcv.type[61]='\0';
// }
// else if (n==2) {
// if (decodef(buff,3,neu)<3) continue;
// pcv.off[0][0]=neu[1];
// pcv.off[0][1]=neu[0];
// pcv.off[0][2]=neu[2];
// }
// else if (n==3) decodef(buff,10,pcv.var[0]);
// else if (n==4) decodef(buff,9,pcv.var[0]+10);
// else if (n==5) {
// if (decodef(buff,3,neu)<3) continue;;
// pcv.off[1][0]=neu[1];
// pcv.off[1][1]=neu[0];
// pcv.off[1][2]=neu[2];
// }
// else if (n==6) decodef(buff,10,pcv.var[1]);
// else if (n==7) {
// decodef(buff,9,pcv.var[1]+10);
// addpcv(&pcv,pcvs);
// }
// }
// fclose(fp);
//
// return 1;
// }
/* read antex file ----------------------------------------------------------*/
// static int readantex(const char *file, pcvs_t *pcvs)
//{
// FILE *fp;
// static const pcv_t pcv0={0};
// pcv_t pcv;
// double neu[3];
// int i,f,freq=0,state=0,freqs[]={1,2,5,0};
// char buff[256];
//
// trace(3,"readantex: file=%s\n",file);
//
// if (!(fp=fopen(file,"r"))) {
// trace(2,"antex pcv file open error: %s\n",file);
// return 0;
// }
// while (fgets(buff,sizeof(buff),fp)) {
//
// if (strlen(buff)<60||strstr(buff+60,"COMMENT")) continue;
//
// if (strstr(buff+60,"START OF ANTENNA")) {
// pcv=pcv0;
// state=1;
// }
// if (strstr(buff+60,"END OF ANTENNA")) {
// addpcv(&pcv,pcvs);
// state=0;
// }
// if (!state) continue;
//
// if (strstr(buff+60,"TYPE / SERIAL NO")) {
// strncpy(pcv.type,buff ,20); pcv.type[20]='\0';
// strncpy(pcv.code,buff+20,20); pcv.code[20]='\0';
// if (!strncmp(pcv.code+3," ",8)) {
// pcv.sat=satid2no(pcv.code);
// }
// }
// else if (strstr(buff+60,"VALID FROM")) {
// if (!str2time(buff,0,43,&pcv.ts)) continue;
// }
// else if (strstr(buff+60,"VALID UNTIL")) {
// if (!str2time(buff,0,43,&pcv.te)) continue;
// }
// else if (strstr(buff+60,"START OF FREQUENCY")) {
// if (!pcv.sat&&buff[3]!='G') continue; /* only read rec ant for GPS */
// if (sscanf(buff+4,"%d",&f)<1) continue;
// for (i=0;freqs[i];i++) if (freqs[i]==f) break;
// if (freqs[i]) freq=i+1;
// /* for Galileo E5b: save to E2, not E7 */
// if (satsys(pcv.sat,NULL)==SYS_GAL&&f==7) freq=2;
// }
// else if (strstr(buff+60,"END OF FREQUENCY")) {
// freq=0;
// }
// else if (strstr(buff+60,"NORTH / EAST / UP")) {
// if (freq<1||NFREQ<freq) continue;
// if (decodef(buff,3,neu)<3) continue;
// pcv.off[freq-1][0]=neu[pcv.sat?0:1]; /* x or e */
// pcv.off[freq-1][1]=neu[pcv.sat?1:0]; /* y or n */
// pcv.off[freq-1][2]=neu[2]; /* z or u */
// }
// else if (strstr(buff,"NOAZI")) {
// if (freq<1||NFREQ<freq) continue;
// if ((i=decodef(buff+8,19,pcv.var[freq-1]))<=0) continue;
// for (;i<19;i++) pcv.var[freq-1][i]=pcv.var[freq-1][i-1];
// }
// }
// fclose(fp);
//
// return 1;
// }
/* read antenna parameters ------------------------------------------------------
* read antenna parameters
* args : char *file I antenna parameter file (antex)
* pcvs_t *pcvs IO antenna parameters
* return : status (1:ok,0:file open error)
* notes : file with the externsion .atx or .ATX is recognized as antex
* file except for antex is recognized ngs antenna parameters
* see reference [3]
* only support non-azimuth-depedent parameters
*-----------------------------------------------------------------------------*/
// extern int readpcv(const char *file, pcvs_t *pcvs)
//{
// pcv_t *pcv;
// char *ext;
// int i,stat;
//
// trace(3,"readpcv: file=%s\n",file);
//
// if (!(ext=strrchr(file,'.'))) ext="";
//
// if (!strcmp(ext,".atx")||!strcmp(ext,".ATX")) {
// stat=readantex(file,pcvs);
// }
// else {
// stat=readngspcv(file,pcvs);
// }
// for (i=0;i<pcvs->n;i++) {
// pcv=pcvs->pcv+i;
// trace(4,"sat=%2d type=%20s code=%s off=%8.4f %8.4f %8.4f %8.4f %8.4f %8.4f\n",
// pcv->sat,pcv->type,pcv->code,pcv->off[0][0],pcv->off[0][1],
// pcv->off[0][2],pcv->off[1][0],pcv->off[1][1],pcv->off[1][2]);
// }
// return stat;
// }
/* search antenna parameter ----------------------------------------------------
* read satellite antenna phase center position
* args : int sat I satellite number (0: receiver antenna)
* char *type I antenna type for receiver antenna
* gtime_t time I time to search parameters
* pcvs_t *pcvs IO antenna parameters
* return : antenna parameter (NULL: no antenna)
*-----------------------------------------------------------------------------*/
// extern pcv_t *searchpcv(int sat, const char *type, gtime_t time,
// const pcvs_t *pcvs)
//{
// pcv_t *pcv;
// char buff[MAXANT],*types[2],*p;
// int i,j,n=0;
//
// trace(4,"searchpcv: sat=%2d type=%s\n",sat,type);
//
// if (sat) { /* search satellite antenna */
// for (i=0;i<pcvs->n;i++) {
// pcv=pcvs->pcv+i;
// if (pcv->sat!=sat) continue;
// if (pcv->ts.time!=0&&timediff(pcv->ts,time)>0.0) continue;
// if (pcv->te.time!=0&&timediff(pcv->te,time)<0.0) continue;
// return pcv;
// }
// }
// else {
// strcpy(buff,type);
// for (p=strtok(buff," ");p&&n<2;p=strtok(NULL," ")) types[n++]=p;
// if (n<=0) return NULL;
//
// /* search receiver antenna with radome at first */
// for (i=0;i<pcvs->n;i++) {
// pcv=pcvs->pcv+i;
// for (j=0;j<n;j++) if (!strstr(pcv->type,types[j])) break;
// if (j>=n) return pcv;
// }
// /* search receiver antenna without radome */
// for (i=0;i<pcvs->n;i++) {
// pcv=pcvs->pcv+i;
// if (strstr(pcv->type,types[0])!=pcv->type) continue;
//
// trace(2,"pcv without radome is used type=%s\n",type);
// return pcv;
// }
// }
// return NULL;
// }
/* read station positions ------------------------------------------------------
* read positions from station position file
* args : char *file I station position file containing
* lat(deg) lon(deg) height(m) name in a line
* char *rcvs I station name
* double *pos O station position {lat,lon,h} (rad/m)
* (all 0 if search error)
* return : none
*-----------------------------------------------------------------------------*/
extern void readpos(const char *file, const char *rcv, double *pos)
{
static double poss[2048][3];
static char stas[2048][16];
FILE *fp;
int i, j, len, np = 0;
char buff[256], str[256];
trace(3, "readpos: file=%s\n", file);
if (!(fp = fopen(file, "r")))
{
fprintf(stderr, "reference position file open error : %s\n", file);
return;
}
while (np < 2048 && fgets(buff, sizeof(buff), fp))
{
if (buff[0] == '%' || buff[0] == '#')
continue;
if (sscanf(buff, "%lf %lf %lf %s", &poss[np][0], &poss[np][1], &poss[np][2],
str) < 4)
continue;
sprintf(stas[np++], "%.15s", str);
}
fclose(fp);
len = (int)strlen(rcv);
for (i = 0; i < np; i++)
{
if (strncmp(stas[i], rcv, len))
continue;
for (j = 0; j < 3; j++)
pos[j] = poss[i][j];
pos[0] *= D2R;
pos[1] *= D2R;
return;
}
pos[0] = pos[1] = pos[2] = 0.0;
}
/* read blq record -----------------------------------------------------------*/
static int readblqrecord(FILE *fp, double *odisp)
{
double v[11];
char buff[256];
int i, n = 0;
while (fgets(buff, sizeof(buff), fp))
{
if (!strncmp(buff, "$$", 2))
continue;
if (sscanf(buff, "%lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf",
v, v + 1, v + 2, v + 3, v + 4, v + 5, v + 6, v + 7, v + 8, v + 9, v + 10) < 11)
continue;
for (i = 0; i < 11; i++)
odisp[n + i * 6] = v[i];
if (++n == 6)
return 1;
}
return 0;
}
/* read blq ocean tide loading parameters --------------------------------------
* read blq ocean tide loading parameters
* args : char *file I BLQ ocean tide loading parameter file
* char *sta I station name
* double *odisp O ocean tide loading parameters
* return : status (1:ok,0:file open error)
*-----------------------------------------------------------------------------*/
extern int readblq(const char *file, const char *sta, double *odisp)
{
FILE *fp;
char buff[256], staname[32] = "", name[32], *p;
/* station name to upper case */
(void)sscanf(sta, "%16s", staname);
for (p = staname; (*p = (char)toupper((int)(*p))); p++)
;
if (!(fp = fopen(file, "r")))
{
trace(2, "blq file open error: file=%s\n", file);
return 0;
}
while (fgets(buff, sizeof(buff), fp))
{
if (!strncmp(buff, "$$", 2) || strlen(buff) < 2)
continue;
if (sscanf(buff + 2, "%16s", name) < 1)
continue;
for (p = name; (*p = (char)toupper((int)(*p))); p++)
;
if (strcmp(name, staname))
continue;
/* read blq record */
if (readblqrecord(fp, odisp))
{
fclose(fp);
return 1;
}
}
fclose(fp);
trace(2, "no otl parameters: sta=%s file=%s\n", sta, file);
return 0;
}
/* read earth rotation parameters ----------------------------------------------
* read earth rotation parameters
* args : char *file I IGS ERP file (IGS ERP ver.2)
* erp_t *erp O earth rotation parameters
* return : status (1:ok,0:file open error)
*-----------------------------------------------------------------------------*/
extern int readerp(const char *file, erp_t *erp)
{
FILE *fp;
erpd_t *erp_data;
double v[14] = {0};
char buff[256];
trace(3, "readerp: file=%s\n", file);
if (!(fp = fopen(file, "r")))
{
trace(2, "erp file open error: file=%s\n", file);
return 0;
}
while (fgets(buff, sizeof(buff), fp))
{
if (sscanf(buff, "%lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf",
v, v + 1, v + 2, v + 3, v + 4, v + 5, v + 6, v + 7, v + 8, v + 9, v + 10, v + 11, v + 12, v + 13) < 5)
{
continue;
}
if (erp->n >= erp->nmax)
{
erp->nmax = erp->nmax <= 0 ? 128 : erp->nmax * 2;
erp_data = (erpd_t *)realloc(erp->data, sizeof(erpd_t) * erp->nmax);
if (!erp_data)
{
free(erp->data);
erp->data = NULL;
erp->n = erp->nmax = 0;
fclose(fp);
return 0;
}
erp->data = erp_data;
}
erp->data[erp->n].mjd = v[0];
erp->data[erp->n].xp = v[1] * 1E-6 * AS2R;
erp->data[erp->n].yp = v[2] * 1E-6 * AS2R;
erp->data[erp->n].ut1_utc = v[3] * 1E-7;
erp->data[erp->n].lod = v[4] * 1E-7;
erp->data[erp->n].xpr = v[12] * 1E-6 * AS2R;
erp->data[erp->n++].ypr = v[13] * 1E-6 * AS2R;
}
fclose(fp);
return 1;
}
/* get earth rotation parameter values -----------------------------------------
* get earth rotation parameter values
* args : erp_t *erp I earth rotation parameters
* gtime_t time I time (gpst)
* double *erpv O erp values {xp,yp,ut1_utc,lod} (rad,rad,s,s/d)
* return : status (1:ok,0:error)
* <20><>ȡERP<52><50><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ת<EFBFBD><D7AA><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ֵ
* <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>3<EFBFBD><33><EFBFBD><EFBFBD>
erp_t *erp I earth rotation parameters
gtime_t time I time (gpst)
double *erpv O erp values {xp,yp,ut1_utc,lod} (rad,rad,s,s/d)
<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>:
int O (1:ok,0:error)
*-----------------------------------------------------------------------------*/
extern int geterp(const erp_t *erp, gtime_t time, double *erpv)
{
const double ep[] = {2000, 1, 1, 12, 0, 0};
double mjd, day, a;
int i, j, k;
trace(4, "geterp:\n");
if (erp->n <= 0)
return 0;
// 1<><31><EFBFBD><EFBFBD><EFBFBD>㵱ǰʱ<C7B0><CAB1><EFBFBD><EFBFBD>ERP<52><50><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʱ<EFBFBD><CAB1><EFBFBD>IJ<EFBFBD>ֵ
mjd = 51544.5 + (timediff(gpst2utc(time), epoch2time(ep))) / 86400.0;
// 2<><32><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ǰʱ<C7B0><CAB1><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ERP<52><50><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʱ<EFBFBD><EFBFBD><E4A3AC><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʱ<EFBFBD><CAB1><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
if (mjd <= erp->data[0].mjd)
{
day = mjd - erp->data[0].mjd;
erpv[0] = erp->data[0].xp + erp->data[0].xpr * day;
erpv[1] = erp->data[0].yp + erp->data[0].ypr * day;
erpv[2] = erp->data[0].ut1_utc - erp->data[0].lod * day;
erpv[3] = erp->data[0].lod;
return 1;
}
// 3<><33><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ǰʱ<C7B0><CAB1><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ERP<52><50><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʱ<EFBFBD><EFBFBD><E4A3AC><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʱ<EFBFBD><CAB1><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
if (mjd >= erp->data[erp->n - 1].mjd)
{
day = mjd - erp->data[erp->n - 1].mjd;
erpv[0] = erp->data[erp->n - 1].xp + erp->data[erp->n - 1].xpr * day;
erpv[1] = erp->data[erp->n - 1].yp + erp->data[erp->n - 1].ypr * day;
erpv[2] = erp->data[erp->n - 1].ut1_utc - erp->data[erp->n - 1].lod * day;
erpv[3] = erp->data[erp->n - 1].lod;
return 1;
}
// 4<><34><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ǰʱ<C7B0><CAB1><EFBFBD><EFBFBD>ERP<52><50><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʱ<EFBFBD><CAB1>֮<EFBFBD><EFBFBD><E4A3AC><EFBFBD><EFBFBD><EFBFBD>ҵ<EFBFBD><D2B5><EFBFBD><EFBFBD>ӽ<EFBFBD><D3BD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʱ<EFBFBD>䣬Ȼ<E4A3AC><C8BB><EFBFBD>ò<EFBFBD>ֵ
for (j = 0, k = erp->n - 1; j < k - 1;)
{
i = (j + k) / 2;
if (mjd < erp->data[i].mjd)
k = i;
else
j = i;
}
if (erp->data[j].mjd == erp->data[j + 1].mjd)
{
a = 0.5;
}
else
{
a = (mjd - erp->data[j].mjd) / (erp->data[j + 1].mjd - erp->data[j].mjd);
}
erpv[0] = (1.0 - a) * erp->data[j].xp + a * erp->data[j + 1].xp;
erpv[1] = (1.0 - a) * erp->data[j].yp + a * erp->data[j + 1].yp;
erpv[2] = (1.0 - a) * erp->data[j].ut1_utc + a * erp->data[j + 1].ut1_utc;
erpv[3] = (1.0 - a) * erp->data[j].lod + a * erp->data[j + 1].lod;
return 1;
}
/* compare ephemeris ---------------------------------------------------------*/
static int cmpeph(const void *p1, const void *p2)
{
eph_t *q1 = (eph_t *)p1, *q2 = (eph_t *)p2;
return q1->ttr.time != q2->ttr.time ? (int)(q1->ttr.time - q2->ttr.time) : (q1->toe.time != q2->toe.time ? (int)(q1->toe.time - q2->toe.time) : q1->sat - q2->sat);
}
/* sort and unique ephemeris -------------------------------------------------*/
static void uniqeph(nav_t *nav)
{
eph_t *nav_eph;
int i, j;
trace(3, "uniqeph: n=%d\n", nav->n);
if (nav->n <= 0)
return;
qsort(nav->eph, nav->n, sizeof(eph_t), cmpeph);
for (i = 1, j = 0; i < nav->n; i++)
{
if (nav->eph[i].sat != nav->eph[j].sat ||
nav->eph[i].iode != nav->eph[j].iode)
{
nav->eph[++j] = nav->eph[i];
}
}
nav->n = j + 1;
if (!(nav_eph = (eph_t *)realloc(nav->eph, sizeof(eph_t) * nav->n)))
{
trace(1, "uniqeph malloc error n=%d\n", nav->n);
free(nav->eph);
nav->eph = NULL;
nav->n = nav->nmax = 0;
return;
}
nav->eph = nav_eph;
nav->nmax = nav->n;
trace(4, "uniqeph: n=%d\n", nav->n);
}
/* compare glonass ephemeris -------------------------------------------------*/
static int cmpgeph(const void *p1, const void *p2)
{
geph_t *q1 = (geph_t *)p1, *q2 = (geph_t *)p2;
return q1->tof.time != q2->tof.time ? (int)(q1->tof.time - q2->tof.time) : (q1->toe.time != q2->toe.time ? (int)(q1->toe.time - q2->toe.time) : q1->sat - q2->sat);
}
/* sort and unique glonass ephemeris -----------------------------------------*/
static void uniqgeph(nav_t *nav)
{
geph_t *nav_geph;
int i, j;
trace(3, "uniqgeph: ng=%d\n", nav->ng);
if (nav->ng <= 0)
return;
qsort(nav->geph, nav->ng, sizeof(geph_t), cmpgeph);
for (i = j = 0; i < nav->ng; i++)
{
if (nav->geph[i].sat != nav->geph[j].sat ||
nav->geph[i].toe.time != nav->geph[j].toe.time ||
nav->geph[i].svh != nav->geph[j].svh)
{
nav->geph[++j] = nav->geph[i];
}
}
nav->ng = j + 1;
if (!(nav_geph = (geph_t *)realloc(nav->geph, sizeof(geph_t) * nav->ng)))
{
trace(1, "uniqgeph malloc error ng=%d\n", nav->ng);
free(nav->geph);
nav->geph = NULL;
nav->ng = nav->ngmax = 0;
return;
}
nav->geph = nav_geph;
nav->ngmax = nav->ng;
trace(4, "uniqgeph: ng=%d\n", nav->ng);
}
/* compare sbas ephemeris ----------------------------------------------------*/
// static int cmpseph(const void *p1, const void *p2)
//{
// seph_t *q1=(seph_t *)p1,*q2=(seph_t *)p2;
// return q1->tof.time!=q2->tof.time?(int)(q1->tof.time-q2->tof.time):
// (q1->t0.time!=q2->t0.time?(int)(q1->t0.time-q2->t0.time):
// q1->sat-q2->sat);
// }
/* sort and unique sbas ephemeris --------------------------------------------*/
// static void uniqseph(nav_t *nav)
//{
// seph_t *nav_seph;
// int i,j;
//
// trace(3,"uniqseph: ns=%d\n",nav->ns);
//
// if (nav->ns<=0) return;
//
// qsort(nav->seph,nav->ns,sizeof(seph_t),cmpseph);
//
// for (i=j=0;i<nav->ns;i++) {
// if (nav->seph[i].sat!=nav->seph[j].sat||
// nav->seph[i].t0.time!=nav->seph[j].t0.time) {
// nav->seph[++j]=nav->seph[i];
// }
// }
// nav->ns=j+1;
//
// if (!(nav_seph=(seph_t *)realloc(nav->seph,sizeof(seph_t)*nav->ns))) {
// trace(1,"uniqseph malloc error ns=%d\n",nav->ns);
// free(nav->seph); nav->seph=NULL; nav->ns=nav->nsmax=0;
// return;
// }
// nav->seph=nav_seph;
// nav->nsmax=nav->ns;
//
// trace(4,"uniqseph: ns=%d\n",nav->ns);
// }
/* unique ephemerides ----------------------------------------------------------
* unique ephemerides in navigation data and update carrier wave length
* args : nav_t *nav IO navigation data
* return : number of epochs
*-----------------------------------------------------------------------------*/
extern void uniqnav(nav_t *nav)
{
trace(3, "uniqnav: neph=%d ngeph=%d nseph=%d\n", nav->n, nav->ng, nav->ns);
/* unique ephemeris */
uniqeph(nav);
uniqgeph(nav);
// uniqseph(nav);
}
/* compare observation data -------------------------------------------------*/
static int cmpobs(const void *p1, const void *p2)
{
obsd_t *q1 = (obsd_t *)p1, *q2 = (obsd_t *)p2;
double tt = timediff(q1->time, q2->time);
if (fabs(tt) > DTTOL)
return tt < 0 ? -1 : 1;
if (q1->rcv != q2->rcv)
return (int)q1->rcv - (int)q2->rcv;
return (int)q1->sat - (int)q2->sat;
}
/* sort and unique observation data --------------------------------------------
* sort and unique observation data by time, rcv, sat
* args : obs_t *obs IO observation data
* return : number of epochs
*-----------------------------------------------------------------------------*/
extern int sortobs(obs_t *obs)
{
int i, j, n;
trace(3, "sortobs: nobs=%d\n", obs->n);
if (obs->n <= 0)
return 0;
qsort(obs->data, obs->n, sizeof(obsd_t), cmpobs);
/* delete duplicated data */
for (i = j = 0; i < obs->n; i++)
{
if (obs->data[i].sat != obs->data[j].sat ||
obs->data[i].rcv != obs->data[j].rcv ||
timediff(obs->data[i].time, obs->data[j].time) != 0.0)
{
obs->data[++j] = obs->data[i];
}
}
obs->n = j + 1;
for (i = n = 0; i < obs->n; i = j, n++)
{
for (j = i + 1; j < obs->n; j++)
{
if (timediff(obs->data[j].time, obs->data[i].time) > DTTOL)
break;
}
}
return n;
}
/* screen by time --------------------------------------------------------------
* screening by time start, time end, and time interval
* args : gtime_t time I time
* gtime_t ts I time start (ts.time==0:no screening by ts)
* gtime_t te I time end (te.time==0:no screening by te)
* double tint I time interval (s) (0.0:no screen by tint)
* return : 1:on condition, 0:not on condition
*-----------------------------------------------------------------------------*/
extern int screent(gtime_t time, gtime_t ts, gtime_t te, double tint)
{
return (tint <= 0.0 || fmod(time2gpst(time, NULL) + DTTOL, tint) <= DTTOL * 2.0) &&
(ts.time == 0 || timediff(time, ts) >= -DTTOL) &&
(te.time == 0 || timediff(time, te) < DTTOL);
}
/* read/save navigation data ---------------------------------------------------
* save or load navigation data
* args : char file I file path
* nav_t nav O/I navigation data
* return : status (1:ok,0:no file)
*-----------------------------------------------------------------------------*/
extern int readnav(const char *file, nav_t *nav)
{
FILE *fp;
eph_t eph0 = {0};
geph_t geph0 = {0};
char buff[4096], *p;
long toe_time, tof_time, toc_time, ttr_time;
int i, sat, prn;
trace(3, "loadnav: file=%s\n", file);
if (!(fp = fopen(file, "r")))
return 0;
while (fgets(buff, sizeof(buff), fp))
{
if (!strncmp(buff, "IONUTC", 6))
{
for (i = 0; i < 8; i++)
nav->ion_gps[i] = 0.0;
for (i = 0; i < 8; i++)
nav->utc_gps[i] = 0.0;
(void)sscanf(buff, "IONUTC,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf",
&nav->ion_gps[0], &nav->ion_gps[1], &nav->ion_gps[2], &nav->ion_gps[3],
&nav->ion_gps[4], &nav->ion_gps[5], &nav->ion_gps[6], &nav->ion_gps[7],
&nav->utc_gps[0], &nav->utc_gps[1], &nav->utc_gps[2], &nav->utc_gps[3],
&nav->utc_gps[4]);
continue;
}
if ((p = strchr(buff, ',')))
*p = '\0';
else
continue;
if (!(sat = satid2no(buff)))
continue;
if (satsys(sat, &prn) == SYS_GLO)
{
nav->geph[prn - 1] = geph0;
nav->geph[prn - 1].sat = sat;
toe_time = tof_time = 0;
(void)sscanf(p + 1, "%d,%d,%d,%d,%d,%ld,%ld,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,"
"%lf,%lf,%lf,%lf",
&nav->geph[prn - 1].iode, &nav->geph[prn - 1].frq, &nav->geph[prn - 1].svh,
&nav->geph[prn - 1].sva, &nav->geph[prn - 1].age,
&toe_time, &tof_time,
&nav->geph[prn - 1].pos[0], &nav->geph[prn - 1].pos[1], &nav->geph[prn - 1].pos[2],
&nav->geph[prn - 1].vel[0], &nav->geph[prn - 1].vel[1], &nav->geph[prn - 1].vel[2],
&nav->geph[prn - 1].acc[0], &nav->geph[prn - 1].acc[1], &nav->geph[prn - 1].acc[2],
&nav->geph[prn - 1].taun, &nav->geph[prn - 1].gamn, &nav->geph[prn - 1].dtaun);
nav->geph[prn - 1].toe.time = toe_time;
nav->geph[prn - 1].tof.time = tof_time;
}
else
{
nav->eph[sat - 1] = eph0;
nav->eph[sat - 1].sat = sat;
toe_time = toc_time = ttr_time = 0;
(void)sscanf(p + 1, "%d,%d,%d,%d,%ld,%ld,%ld,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,"
"%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%lf,%d,%d",
&nav->eph[sat - 1].iode, &nav->eph[sat - 1].iodc, &nav->eph[sat - 1].sva,
&nav->eph[sat - 1].svh,
&toe_time, &toc_time, &ttr_time,
&nav->eph[sat - 1].A, &nav->eph[sat - 1].e, &nav->eph[sat - 1].i0,
&nav->eph[sat - 1].OMG0, &nav->eph[sat - 1].omg, &nav->eph[sat - 1].M0,
&nav->eph[sat - 1].deln, &nav->eph[sat - 1].OMGd, &nav->eph[sat - 1].idot,
&nav->eph[sat - 1].crc, &nav->eph[sat - 1].crs, &nav->eph[sat - 1].cuc,
&nav->eph[sat - 1].cus, &nav->eph[sat - 1].cic, &nav->eph[sat - 1].cis,
&nav->eph[sat - 1].toes, &nav->eph[sat - 1].fit, &nav->eph[sat - 1].f0,
&nav->eph[sat - 1].f1, &nav->eph[sat - 1].f2, &nav->eph[sat - 1].tgd[0],
&nav->eph[sat - 1].code, &nav->eph[sat - 1].flag);
nav->eph[sat - 1].toe.time = toe_time;
nav->eph[sat - 1].toc.time = toc_time;
nav->eph[sat - 1].ttr.time = ttr_time;
}
}
fclose(fp);
return 1;
}
extern int savenav(const char *file, const nav_t *nav)
{
FILE *fp;
int i;
char id[32];
trace(3, "savenav: file=%s\n", file);
if (!(fp = fopen(file, "w")))
return 0;
for (i = 0; i < MAXSAT; i++)
{
if (nav->eph[i].ttr.time == 0)
continue;
satno2id(nav->eph[i].sat, id);
fprintf(fp, "%s,%d,%d,%d,%d,%d,%d,%d,%.14E,%.14E,%.14E,%.14E,%.14E,%.14E,"
"%.14E,%.14E,%.14E,%.14E,%.14E,%.14E,%.14E,%.14E,%.14E,%.14E,"
"%.14E,%.14E,%.14E,%.14E,%.14E,%d,%d\n",
id, nav->eph[i].iode, nav->eph[i].iodc, nav->eph[i].sva,
nav->eph[i].svh, (int)nav->eph[i].toe.time,
(int)nav->eph[i].toc.time, (int)nav->eph[i].ttr.time,
nav->eph[i].A, nav->eph[i].e, nav->eph[i].i0, nav->eph[i].OMG0,
nav->eph[i].omg, nav->eph[i].M0, nav->eph[i].deln, nav->eph[i].OMGd,
nav->eph[i].idot, nav->eph[i].crc, nav->eph[i].crs, nav->eph[i].cuc,
nav->eph[i].cus, nav->eph[i].cic, nav->eph[i].cis, nav->eph[i].toes,
nav->eph[i].fit, nav->eph[i].f0, nav->eph[i].f1, nav->eph[i].f2,
nav->eph[i].tgd[0], nav->eph[i].code, nav->eph[i].flag);
}
for (i = 0; i < MAXPRNGLO; i++)
{
if (nav->geph[i].tof.time == 0)
continue;
satno2id(nav->geph[i].sat, id);
fprintf(fp, "%s,%d,%d,%d,%d,%d,%d,%d,%.14E,%.14E,%.14E,%.14E,%.14E,%.14E,"
"%.14E,%.14E,%.14E,%.14E,%.14E,%.14E\n",
id, nav->geph[i].iode, nav->geph[i].frq, nav->geph[i].svh,
nav->geph[i].sva, nav->geph[i].age, (int)nav->geph[i].toe.time,
(int)nav->geph[i].tof.time,
nav->geph[i].pos[0], nav->geph[i].pos[1], nav->geph[i].pos[2],
nav->geph[i].vel[0], nav->geph[i].vel[1], nav->geph[i].vel[2],
nav->geph[i].acc[0], nav->geph[i].acc[1], nav->geph[i].acc[2],
nav->geph[i].taun, nav->geph[i].gamn, nav->geph[i].dtaun);
}
/*fprintf(fp,"IONUTC,%.14E,%.14E,%.14E,%.14E,%.14E,%.14E,%.14E,%.14E,%.14E,"
"%.14E,%.14E,%.14E,%.0f",
nav->ion_gps[0],nav->ion_gps[1],nav->ion_gps[2],nav->ion_gps[3],
nav->ion_gps[4],nav->ion_gps[5],nav->ion_gps[6],nav->ion_gps[7],
nav->utc_gps[0],nav->utc_gps[1],nav->utc_gps[2],nav->utc_gps[3],
nav->utc_gps[4]);*/
fclose(fp);
return 1;
}
/* free observation data -------------------------------------------------------
* free memory for observation data
* args : obs_t *obs IO observation data
* return : none
*-----------------------------------------------------------------------------*/
extern void freeobs(obs_t *obs)
{
free(obs->data);
obs->data = NULL;
obs->n = obs->nmax = 0;
}
/* free navigation data ---------------------------------------------------------
* free memory for navigation data
* args : nav_t *nav IO navigation data
* int opt I option (or of followings)
* (0x01: gps/qzs ephmeris, 0x02: glonass ephemeris,
* 0x04: sbas ephemeris, 0x08: precise ephemeris,
* 0x10: precise clock 0x20: almanac,
* 0x40: tec data)
* return : none
*-----------------------------------------------------------------------------*/
extern void freenav(nav_t *nav, int opt)
{
if (opt & 0x01)
{
free(nav->eph);
nav->eph = NULL;
nav->n = nav->nmax = 0;
}
if (opt & 0x02)
{
free(nav->geph);
nav->geph = NULL;
nav->ng = nav->ngmax = 0;
}
// if (opt&0x04) {free(nav->seph); nav->seph=NULL; nav->ns=nav->nsmax=0;}
// if (opt&0x08) {free(nav->peph); nav->peph=NULL; nav->ne=nav->nemax=0;}
// if (opt&0x10) {free(nav->pclk); nav->pclk=NULL; nav->nc=nav->ncmax=0;}
// if (opt&0x20) {free(nav->alm ); nav->alm =NULL; nav->na=nav->namax=0;}
// if (opt&0x40) {free(nav->tec ); nav->tec =NULL; nav->nt=nav->ntmax=0;}
}
/* debug trace functions -----------------------------------------------------*/
#ifdef TRACE
static FILE *fp_trace = NULL; /* file pointer of trace */
static char file_trace[1024]; /* trace file */
static int level_trace = 0; /* level of trace */
static uint32_t tick_trace = 0; /* tick time at traceopen (ms) */
static gtime_t time_trace = {0}; /* time at traceopen */
static lock_t lock_trace; /* lock for trace */
static void traceswap(void)
{
gtime_t time = utc2gpst(timeget());
char path[1024];
lock(&lock_trace);
if ((int)(time2gpst(time, NULL) / INT_SWAP_TRAC) ==
(int)(time2gpst(time_trace, NULL) / INT_SWAP_TRAC))
{
unlock(&lock_trace);
return;
}
time_trace = time;
if (!reppath(file_trace, path, time, "", ""))
{
unlock(&lock_trace);
return;
}
if (fp_trace)
fclose(fp_trace);
if (!(fp_trace = fopen(path, "w")))
{
fp_trace = stderr;
}
unlock(&lock_trace);
}
extern void traceopen(const char *file)
{
gtime_t time = utc2gpst(timeget());
char path[1024];
reppath(file, path, time, "", "");
if (!*path || !(fp_trace = fopen(path, "w")))
fp_trace = stderr;
strcpy(file_trace, file);
tick_trace = tickget();
time_trace = time;
initlock(&lock_trace);
}
extern void traceclose(void)
{
if (fp_trace && fp_trace != stderr)
fclose(fp_trace);
fp_trace = NULL;
file_trace[0] = '\0';
}
extern void tracelevel(int level)
{
level_trace = level;
}
extern int gettracelevel(void)
{
return level_trace;
}
extern void trace(int level, const char *format, ...)
{
va_list ap;
/* print error message to stderr */
if (level <= 1)
{
va_start(ap, format);
vfprintf(stderr, format, ap);
va_end(ap);
}
if (!fp_trace || level > level_trace)
return;
traceswap();
fprintf(fp_trace, "%d ", level);
va_start(ap, format);
vfprintf(fp_trace, format, ap);
va_end(ap);
fflush(fp_trace);
}
extern void tracet(int level, const char *format, ...)
{
va_list ap;
if (!fp_trace || level > level_trace)
return;
traceswap();
fprintf(fp_trace, "%d %9.3f: ", level, (tickget() - tick_trace) / 1000.0);
va_start(ap, format);
vfprintf(fp_trace, format, ap);
va_end(ap);
fflush(fp_trace);
}
extern void tracemat(int level, const double *A, int n, int m, int p, int q)
{
if (!fp_trace || level > level_trace)
return;
matfprint(A, n, m, p, q, fp_trace);
fflush(fp_trace);
}
extern void traceobs(int level, const obsd_t *obs, int n)
{
char str[64], id[16];
int i;
if (!fp_trace || level > level_trace)
return;
for (i = 0; i < n; i++)
{
time2str(obs[i].time, str, 3);
satno2id(obs[i].sat, id);
fprintf(fp_trace, " (%2d) %s %-3s rcv%d %13.3f %13.3f %13.3f %13.3f %d %d %d %d %x %x %3.1f %3.1f\n",
i + 1, str, id, obs[i].rcv, obs[i].L[0], obs[i].L[1], obs[i].P[0],
obs[i].P[1], obs[i].LLI[0], obs[i].LLI[1], obs[i].code[0],
obs[i].code[1], obs[i].Lstd[0], obs[i].Pstd[0], obs[i].SNR[0] * SNR_UNIT, obs[i].SNR[1] * SNR_UNIT);
}
fflush(fp_trace);
}
extern void tracenav(int level, const nav_t *nav)
{
char s1[64], s2[64], id[16];
int i;
if (!fp_trace || level > level_trace)
return;
for (i = 0; i < nav->n; i++)
{
time2str(nav->eph[i].toe, s1, 0);
time2str(nav->eph[i].ttr, s2, 0);
satno2id(nav->eph[i].sat, id);
fprintf(fp_trace, "(%3d) %-3s : %s %s %3d %3d %02x\n", i + 1,
id, s1, s2, nav->eph[i].iode, nav->eph[i].iodc, nav->eph[i].svh);
}
fprintf(fp_trace, "(ion) %9.4e %9.4e %9.4e %9.4e\n", nav->ion_gps[0],
nav->ion_gps[1], nav->ion_gps[2], nav->ion_gps[3]);
fprintf(fp_trace, "(ion) %9.4e %9.4e %9.4e %9.4e\n", nav->ion_gps[4],
nav->ion_gps[5], nav->ion_gps[6], nav->ion_gps[7]);
// fprintf(fp_trace,"(ion) %9.4e %9.4e %9.4e %9.4e\n",nav->ion_gal[0],
// nav->ion_gal[1],nav->ion_gal[2],nav->ion_gal[3]);
}
extern void tracegnav(int level, const nav_t *nav)
{
char s1[64], s2[64], id[16];
int i;
if (!fp_trace || level > level_trace)
return;
for (i = 0; i < nav->ng; i++)
{
time2str(nav->geph[i].toe, s1, 0);
time2str(nav->geph[i].tof, s2, 0);
satno2id(nav->geph[i].sat, id);
fprintf(fp_trace, "(%3d) %-3s : %s %s %2d %2d %8.3f\n", i + 1,
id, s1, s2, nav->geph[i].frq, nav->geph[i].svh, nav->geph[i].taun * 1E6);
}
}
extern void tracehnav(int level, const nav_t *nav)
{
// char s1[64],s2[64],id[16];
// int i;
//
// if (!fp_trace||level>level_trace) return;
// for (i=0;i<nav->ns;i++) {
// time2str(nav->seph[i].t0,s1,0);
// time2str(nav->seph[i].tof,s2,0);
// satno2id(nav->seph[i].sat,id);
// fprintf(fp_trace,"(%3d) %-3s : %s %s %2d %2d\n",i+1,
// id,s1,s2,nav->seph[i].svh,nav->seph[i].sva);
// }
}
extern void tracepeph(int level, const nav_t *nav)
{
// char s[64],id[16];
// int i,j;
//
// if (!fp_trace||level>level_trace) return;
//
// for (i=0;i<nav->ne;i++) {
// time2str(nav->peph[i].time,s,0);
// for (j=0;j<MAXSAT;j++) {
// satno2id(j+1,id);
// fprintf(fp_trace,"%-3s %d %-3s %13.3f %13.3f %13.3f %13.3f %6.3f %6.3f %6.3f %6.3f\n",
// s,nav->peph[i].index,id,
// nav->peph[i].pos[j][0],nav->peph[i].pos[j][1],
// nav->peph[i].pos[j][2],nav->peph[i].pos[j][3]*1E9,
// nav->peph[i].std[j][0],nav->peph[i].std[j][1],
// nav->peph[i].std[j][2],nav->peph[i].std[j][3]*1E9);
// }
// }
}
extern void tracepclk(int level, const nav_t *nav)
{
// char s[64],id[16];
// int i,j;
//
// if (!fp_trace||level>level_trace) return;
//
// for (i=0;i<nav->nc;i++) {
// time2str(nav->pclk[i].time,s,0);
// for (j=0;j<MAXSAT;j++) {
// satno2id(j+1,id);
// fprintf(fp_trace,"%-3s %d %-3s %13.3f %6.3f\n",
// s,nav->pclk[i].index,id,
// nav->pclk[i].clk[j][0]*1E9,nav->pclk[i].std[j][0]*1E9);
// }
// }
}
extern void traceb(int level, const uint8_t *p, int n)
{
int i;
if (!fp_trace || level > level_trace)
return;
for (i = 0; i < n; i++)
fprintf(fp_trace, "%02X%s", *p++, i % 8 == 7 ? " " : "");
fprintf(fp_trace, "\n");
}
#else
extern void traceopen(const char *file)
{
}
extern void traceclose(void) {}
extern void tracelevel(int level) {}
extern void trace(int level, const char *format, ...) {}
extern void tracet(int level, const char *format, ...) {}
extern void tracemat(int level, const double *A, int n, int m, int p, int q) {}
extern void traceobs(int level, const obsd_t *obs, int n) {}
extern void tracenav(int level, const nav_t *nav) {}
extern void tracegnav(int level, const nav_t *nav) {}
extern void tracehnav(int level, const nav_t *nav) {}
extern void tracepeph(int level, const nav_t *nav) {}
extern void tracepclk(int level, const nav_t *nav) {}
extern void traceb(int level, const uint8_t *p, int n) {}
#endif /* TRACE */
/* execute command -------------------------------------------------------------
* execute command line by operating system shell
* args : char *cmd I command line
* return : execution status (0:ok,0>:error)
*-----------------------------------------------------------------------------*/
extern int execcmd(const char *cmd)
{
trace(3, "execcmd: cmd=%s\n", cmd);
return system(cmd);
}
/* replace string ------------------------------------------------------------*/
static int repstr(char *str, const char *pat, const char *rep)
{
int len = (int)strlen(pat);
char buff[1024] = {'\0'}, *p, *q, *r;
for (p = str, r = buff; *p; p = q + len)
{
if (!(q = strstr(p, pat)))
break;
strncpy(r, p, q - p);
r += q - p;
r += sprintf(r, "%s", rep);
}
if (p <= str)
return 0;
strcpy(r, p);
strcpy(str, buff);
return 1;
}
/* replace keywords in file path -----------------------------------------------
* replace keywords in file path with date, time, rover and base station id
* args : char *path I file path (see below)
* char *rpath O file path in which keywords replaced (see below)
* gtime_t time I time (gpst) (time.time==0: not replaced)
* char *rov I rover id string ("": not replaced)
* char *base I base station id string ("": not replaced)
* return : status (1:keywords replaced, 0:no valid keyword in the path,
* -1:no valid time)
* notes : the following keywords in path are replaced by date, time and name
* %Y -> yyyy : year (4 digits) (1900-2099)
* %y -> yy : year (2 digits) (00-99)
* %m -> mm : month (01-12)
* %d -> dd : day of month (01-31)
* %h -> hh : hours (00-23)
* %M -> mm : minutes (00-59)
* %S -> ss : seconds (00-59)
* %n -> ddd : day of year (001-366)
* %W -> wwww : gps week (0001-9999)
* %D -> d : day of gps week (0-6)
* %H -> h : hour code (a=0,b=1,c=2,...,x=23)
* %ha-> hh : 3 hours (00,03,06,...,21)
* %hb-> hh : 6 hours (00,06,12,18)
* %hc-> hh : 12 hours (00,12)
* %t -> mm : 15 minutes (00,15,30,45)
* %r -> rrrr : rover id
* %b -> bbbb : base station id
*-----------------------------------------------------------------------------*/
extern int reppath(const char *path, char *rpath, gtime_t time, const char *rov,
const char *base)
{
double ep[6], ep0[6] = {2000, 1, 1, 0, 0, 0};
int week, dow, doy, stat = 0;
char rep[64];
strcpy(rpath, path);
if (!strstr(rpath, "%"))
return 0;
if (*rov)
stat |= repstr(rpath, "%r", rov);
if (*base)
stat |= repstr(rpath, "%b", base);
if (time.time != 0)
{
time2epoch(time, ep);
ep0[0] = ep[0];
dow = (int)floor(time2gpst(time, &week) / 86400.0);
doy = (int)floor(timediff(time, epoch2time(ep0)) / 86400.0) + 1;
sprintf(rep, "%02d", ((int)ep[3] / 3) * 3);
stat |= repstr(rpath, "%ha", rep);
sprintf(rep, "%02d", ((int)ep[3] / 6) * 6);
stat |= repstr(rpath, "%hb", rep);
sprintf(rep, "%02d", ((int)ep[3] / 12) * 12);
stat |= repstr(rpath, "%hc", rep);
sprintf(rep, "%04.0f", ep[0]);
stat |= repstr(rpath, "%Y", rep);
sprintf(rep, "%02.0f", fmod(ep[0], 100.0));
stat |= repstr(rpath, "%y", rep);
sprintf(rep, "%02.0f", ep[1]);
stat |= repstr(rpath, "%m", rep);
sprintf(rep, "%02.0f", ep[2]);
stat |= repstr(rpath, "%d", rep);
sprintf(rep, "%02.0f", ep[3]);
stat |= repstr(rpath, "%h", rep);
sprintf(rep, "%02.0f", ep[4]);
stat |= repstr(rpath, "%M", rep);
sprintf(rep, "%02.0f", floor(ep[5]));
stat |= repstr(rpath, "%S", rep);
sprintf(rep, "%03d", doy);
stat |= repstr(rpath, "%n", rep);
sprintf(rep, "%04d", week);
stat |= repstr(rpath, "%W", rep);
sprintf(rep, "%d", dow);
stat |= repstr(rpath, "%D", rep);
sprintf(rep, "%c", 'a' + (int)ep[3]);
stat |= repstr(rpath, "%H", rep);
sprintf(rep, "%02d", ((int)ep[4] / 15) * 15);
stat |= repstr(rpath, "%t", rep);
}
else if (strstr(rpath, "%ha") || strstr(rpath, "%hb") || strstr(rpath, "%hc") ||
strstr(rpath, "%Y") || strstr(rpath, "%y") || strstr(rpath, "%m") ||
strstr(rpath, "%d") || strstr(rpath, "%h") || strstr(rpath, "%M") ||
strstr(rpath, "%S") || strstr(rpath, "%n") || strstr(rpath, "%W") ||
strstr(rpath, "%D") || strstr(rpath, "%H") || strstr(rpath, "%t"))
{
return -1; /* no valid time */
}
return stat;
}
/* replace keywords in file path and generate multiple paths -------------------
* replace keywords in file path with date, time, rover and base station id
* generate multiple keywords-replaced paths
* args : char *path I file path (see below)
* char *rpath[] O file paths in which keywords replaced
* int nmax I max number of output file paths
* gtime_t ts I time start (gpst)
* gtime_t te I time end (gpst)
* char *rov I rover id string ("": not replaced)
* char *base I base station id string ("": not replaced)
* return : number of replaced file paths
* notes : see reppath() for replacements of keywords.
* minimum interval of time replaced is 900s.
*-----------------------------------------------------------------------------*/
extern int reppaths(const char *path, char *rpath[], int nmax, gtime_t ts,
gtime_t te, const char *rov, const char *base)
{
gtime_t time;
double tow, tint = 86400.0;
int i, n = 0, week;
trace(3, "reppaths: path =%s nmax=%d rov=%s base=%s\n", path, nmax, rov, base);
if (ts.time == 0 || te.time == 0 || timediff(ts, te) > 0.0)
return 0;
if (strstr(path, "%S") || strstr(path, "%M") || strstr(path, "%t"))
tint = 900.0;
else if (strstr(path, "%h") || strstr(path, "%H"))
tint = 3600.0;
tow = time2gpst(ts, &week);
time = gpst2time(week, floor(tow / tint) * tint);
while (timediff(time, te) <= 0.0 && n < nmax)
{
reppath(path, rpath[n], time, rov, base);
if (n == 0 || strcmp(rpath[n], rpath[n - 1]))
n++;
time = timeadd(time, tint);
}
for (i = 0; i < n; i++)
trace(3, "reppaths: rpath=%s\n", rpath[i]);
return n;
}
/* geometric distance ----------------------------------------------------------
* compute geometric distance and receiver-to-satellite unit vector
* args : double *rs I satellilte position (ecef at transmission) (m)
* double *rr I receiver position (ecef at reception) (m)
* double *e O line-of-sight vector (ecef)
* return : geometric distance (m) (0>:error/no satellite position)
* notes : distance includes sagnac effect correction
*-----------------------------------------------------------------------------*/
extern double geodist(const double *rs, const double *rr, double *e)
{
double r;
int i;
if (norm(rs, 3) < RE_WGS84)
return -1.0;
for (i = 0; i < 3; i++)
e[i] = rs[i] - rr[i];
r = norm(e, 3);
for (i = 0; i < 3; i++)
e[i] /= r;
return r + OMGE * (rs[0] * rr[1] - rs[1] * rr[0]) / CLIGHT;
}
/* satellite azimuth/elevation angle -------------------------------------------
* compute satellite azimuth/elevation angle
* args : double *pos I geodetic position {lat,lon,h} (rad,m)
* double *e I receiver-to-satellilte unit vevtor (ecef)
* double *azel IO azimuth/elevation {az,el} (rad) (NULL: no output)
* (0.0<=azel[0]<2*pi,-pi/2<=azel[1]<=pi/2)
* return : elevation angle (rad)
*-----------------------------------------------------------------------------*/
extern double satazel(const double *pos, const double *e, double *azel)
{
double az = 0.0, el = PI / 2.0, enu[3];
if (pos[2] > -RE_WGS84)
{
ecef2enu(pos, e, enu);
az = dot(enu, enu, 2) < 1E-12 ? 0.0 : atan2(enu[0], enu[1]);
if (az < 0.0)
az += 2 * PI;
el = asin(enu[2]);
}
if (azel)
{
azel[0] = az;
azel[1] = el;
}
return el;
}
/* compute dops ----------------------------------------------------------------
* compute DOP (dilution of precision)
* args : int ns I number of satellites
* double *azel I satellite azimuth/elevation angle (rad)
* double elmin I elevation cutoff angle (rad)
* double *dop O DOPs {GDOP,PDOP,HDOP,VDOP}
* return : none
* notes : dop[0]-[3] return 0 in case of dop computation error
*-----------------------------------------------------------------------------*/
#define SQRT(x) ((x) < 0.0 || (x) != (x) ? 0.0 : sqrt(x))
extern void dops(int ns, const double *azel, double elmin, double *dop)
{
double H[4 * MAXSAT], Q[16], cosel, sinel;
int i, n;
for (i = 0; i < 4; i++)
dop[i] = 0.0;
for (i = n = 0; i < ns && i < MAXSAT; i++)
{
if (azel[1 + i * 2] < elmin || azel[1 + i * 2] <= 0.0)
continue;
cosel = cos(azel[1 + i * 2]);
sinel = sin(azel[1 + i * 2]);
H[4 * n] = cosel * sin(azel[i * 2]);
H[1 + 4 * n] = cosel * cos(azel[i * 2]);
H[2 + 4 * n] = sinel;
H[3 + 4 * n++] = 1.0;
}
if (n < 4)
return;
matmul("NT", 4, 4, n, 1.0, H, H, 0.0, Q);
if (!matinv(Q, 4))
{
dop[0] = SQRT(Q[0] + Q[5] + Q[10] + Q[15]); /* GDOP */
dop[1] = SQRT(Q[0] + Q[5] + Q[10]); /* PDOP */
dop[2] = SQRT(Q[0] + Q[5]); /* HDOP */
dop[3] = SQRT(Q[10]); /* VDOP */
}
}
/* ionosphere model ------------------------------------------------------------
* compute ionospheric delay by broadcast ionosphere model (klobuchar model)
* args : gtime_t t I time (gpst)
* double *ion I iono model parameters {a0,a1,a2,a3,b0,b1,b2,b3}
* double *pos I receiver position {lat,lon,h} (rad,m)
* double *azel I azimuth/elevation angle {az,el} (rad)
* return : ionospheric delay (L1) (m)
*-----------------------------------------------------------------------------*/
extern double ionmodel(gtime_t t, const double *ion, const double *pos,
const double *azel)
{
const double ion_default[] = {/* 2004/1/1 */
0.1118E-07, -0.7451E-08, -0.5961E-07, 0.1192E-06,
0.1167E+06, -0.2294E+06, -0.1311E+06, 0.1049E+07};
double tt, f, psi, phi, lam, amp, per, x;
int week;
if (pos[2] < -1E3 || azel[1] <= 0)
return 0.0;
if (norm(ion, 8) <= 0.0)
ion = ion_default;
/* earth centered angle (semi-circle) */
psi = 0.0137 / (azel[1] / PI + 0.11) - 0.022;
/* subionospheric latitude/longitude (semi-circle) */
phi = pos[0] / PI + psi * cos(azel[0]);
if (phi > 0.416)
phi = 0.416;
else if (phi < -0.416)
phi = -0.416;
lam = pos[1] / PI + psi * sin(azel[0]) / cos(phi * PI);
/* geomagnetic latitude (semi-circle) */
phi += 0.064 * cos((lam - 1.617) * PI);
/* local time (s) */
tt = 43200.0 * lam + time2gpst(t, &week);
tt -= floor(tt / 86400.0) * 86400.0; /* 0<=tt<86400 */
/* slant factor */
f = 1.0 + 16.0 * pow(0.53 - azel[1] / PI, 3.0);
/* ionospheric delay */
amp = ion[0] + phi * (ion[1] + phi * (ion[2] + phi * ion[3]));
per = ion[4] + phi * (ion[5] + phi * (ion[6] + phi * ion[7]));
amp = amp < 0.0 ? 0.0 : amp;
per = per < 72000.0 ? 72000.0 : per;
x = 2.0 * PI * (tt - 50400.0) / per;
return CLIGHT * f * (fabs(x) < 1.57 ? 5E-9 + amp * (1.0 + x * x * (-0.5 + x * x / 24.0)) : 5E-9);
}
/* ionosphere mapping function -------------------------------------------------
* compute ionospheric delay mapping function by single layer model
* args : double *pos I receiver position {lat,lon,h} (rad,m)
* double *azel I azimuth/elevation angle {az,el} (rad)
* return : ionospheric mapping function
*-----------------------------------------------------------------------------*/
extern double ionmapf(const double *pos, const double *azel)
{
if (pos[2] >= HION)
return 1.0;
return 1.0 / cos(asin((RE_WGS84 + pos[2]) / (RE_WGS84 + HION) * sin(PI / 2.0 - azel[1])));
}
/* ionospheric pierce point position -------------------------------------------
* compute ionospheric pierce point (ipp) position and slant factor
* args : double *pos I receiver position {lat,lon,h} (rad,m)
* double *azel I azimuth/elevation angle {az,el} (rad)
* double re I earth radius (km)
* double hion I altitude of ionosphere (km)
* double *posp O pierce point position {lat,lon,h} (rad,m)
* return : slant factor
* notes : see ref [2], only valid on the earth surface
* fixing bug on ref [2] A.4.4.10.1 A-22,23
*-----------------------------------------------------------------------------*/
extern double ionppp(const double *pos, const double *azel, double re,
double hion, double *posp)
{
double cosaz, rp, ap, sinap, tanap;
rp = re / (re + hion) * cos(azel[1]);
ap = PI / 2.0 - azel[1] - asin(rp);
sinap = sin(ap);
tanap = tan(ap);
cosaz = cos(azel[0]);
posp[0] = asin(sin(pos[0]) * cos(ap) + cos(pos[0]) * sinap * cosaz);
if ((pos[0] > 70.0 * D2R && tanap * cosaz > tan(PI / 2.0 - pos[0])) ||
(pos[0] < -70.0 * D2R && -tanap * cosaz > tan(PI / 2.0 + pos[0])))
{
posp[1] = pos[1] + PI - asin(sinap * sin(azel[0]) / cos(posp[0]));
}
else
{
posp[1] = pos[1] + asin(sinap * sin(azel[0]) / cos(posp[0]));
}
return 1.0 / sqrt(1.0 - rp * rp);
}
/* troposphere model -----------------------------------------------------------
* compute tropospheric delay by standard atmosphere and saastamoinen model
* args : gtime_t time I time
* double *pos I receiver position {lat,lon,h} (rad,m)
* double *azel I azimuth/elevation angle {az,el} (rad)
* double humi I relative humidity
* return : tropospheric delay (m)
*-----------------------------------------------------------------------------*/
extern double tropmodel(gtime_t time, const double *pos, const double *azel,
double humi)
{
const double temp0 = 15.0; /* temparature at sea level */
double hgt, pres, temp, e, z, trph, trpw;
if (pos[2] < -100.0 || 1E4 < pos[2] || azel[1] <= 0)
return 0.0;
/* standard atmosphere */
hgt = pos[2] < 0.0 ? 0.0 : pos[2];
pres = 1013.25 * pow(1.0 - 2.2557E-5 * hgt, 5.2568);
temp = temp0 - 6.5E-3 * hgt + 273.16;
e = 6.108 * humi * exp((17.15 * temp - 4684.0) / (temp - 38.45));
/* saastamoninen model */
z = PI / 2.0 - azel[1];
trph = 0.0022768 * pres / (1.0 - 0.00266 * cos(2.0 * pos[0]) - 0.00028 * hgt / 1E3) / cos(z);
trpw = 0.002277 * (1255.0 / temp + 0.05) * e / cos(z);
return trph + trpw;
}
#ifndef IERS_MODEL
static double interpc(const double coef[], double lat)
{
int i = (int)(lat / 15.0);
if (i < 1)
return coef[0];
else if (i > 4)
return coef[4];
return coef[i - 1] * (1.0 - lat / 15.0 + i) + coef[i] * (lat / 15.0 - i);
}
static double mapf(double el, double a, double b, double c)
{
double sinel = sin(el);
return (1.0 + a / (1.0 + b / (1.0 + c))) / (sinel + (a / (sinel + b / (sinel + c))));
}
static double nmf(gtime_t time, const double pos[], const double azel[],
double *mapfw)
{
/* ref [5] table 3 */
/* hydro-ave-a,b,c, hydro-amp-a,b,c, wet-a,b,c at latitude 15,30,45,60,75 */
const double coef[][5] = {
{1.2769934E-3, 1.2683230E-3, 1.2465397E-3, 1.2196049E-3, 1.2045996E-3},
{2.9153695E-3, 2.9152299E-3, 2.9288445E-3, 2.9022565E-3, 2.9024912E-3},
{62.610505E-3, 62.837393E-3, 63.721774E-3, 63.824265E-3, 64.258455E-3},
{0.0000000E-0, 1.2709626E-5, 2.6523662E-5, 3.4000452E-5, 4.1202191E-5},
{0.0000000E-0, 2.1414979E-5, 3.0160779E-5, 7.2562722E-5, 11.723375E-5},
{0.0000000E-0, 9.0128400E-5, 4.3497037E-5, 84.795348E-5, 170.37206E-5},
{5.8021897E-4, 5.6794847E-4, 5.8118019E-4, 5.9727542E-4, 6.1641693E-4},
{1.4275268E-3, 1.5138625E-3, 1.4572752E-3, 1.5007428E-3, 1.7599082E-3},
{4.3472961E-2, 4.6729510E-2, 4.3908931E-2, 4.4626982E-2, 5.4736038E-2}};
const double aht[] = {2.53E-5, 5.49E-3, 1.14E-3}; /* height correction */
double y, cosy, ah[3], aw[3], dm, el = azel[1], lat = pos[0] * R2D, hgt = pos[2];
int i;
if (el <= 0.0)
{
if (mapfw)
*mapfw = 0.0;
return 0.0;
}
/* year from doy 28, added half a year for southern latitudes */
y = (time2doy(time) - 28.0) / 365.25 + (lat < 0.0 ? 0.5 : 0.0);
cosy = cos(2.0 * PI * y);
lat = fabs(lat);
for (i = 0; i < 3; i++)
{
ah[i] = interpc(coef[i], lat) - interpc(coef[i + 3], lat) * cosy;
aw[i] = interpc(coef[i + 6], lat);
}
/* ellipsoidal height is used instead of height above sea level */
dm = (1.0 / sin(el) - mapf(el, aht[0], aht[1], aht[2])) * hgt / 1E3;
if (mapfw)
*mapfw = mapf(el, aw[0], aw[1], aw[2]);
return mapf(el, ah[0], ah[1], ah[2]) + dm;
}
#endif /* !IERS_MODEL */
/* troposphere mapping function ------------------------------------------------
* compute tropospheric mapping function by NMF
* args : gtime_t t I time
* double *pos I receiver position {lat,lon,h} (rad,m)
* double *azel I azimuth/elevation angle {az,el} (rad)
* double *mapfw IO wet mapping function (NULL: not output)
* return : dry mapping function
* note : see ref [5] (NMF) and [9] (GMF)
* original JGR paper of [5] has bugs in eq.(4) and (5). the corrected
* paper is obtained from:
* ftp://web.haystack.edu/pub/aen/nmf/NMF_JGR.pdf
*-----------------------------------------------------------------------------*/
extern double tropmapf(gtime_t time, const double pos[], const double azel[],
double *mapfw)
{
#ifdef IERS_MODEL
const double ep[] = {2000, 1, 1, 12, 0, 0};
double mjd, lat, lon, hgt, zd, gmfh, gmfw;
#endif
trace(4, "tropmapf: pos=%10.6f %11.6f %6.1f azel=%5.1f %4.1f\n",
pos[0] * R2D, pos[1] * R2D, pos[2], azel[0] * R2D, azel[1] * R2D);
if (pos[2] < -1000.0 || pos[2] > 20000.0)
{
if (mapfw)
*mapfw = 0.0;
return 0.0;
}
#ifdef IERS_MODEL
mjd = 51544.5 + (timediff(time, epoch2time(ep))) / 86400.0;
lat = pos[0];
lon = pos[1];
hgt = pos[2] - geoidh(pos); /* height in m (mean sea level) */
zd = PI / 2.0 - azel[1];
/* call GMF */
gmf_(&mjd, &lat, &lon, &hgt, &zd, &gmfh, &gmfw);
if (mapfw)
*mapfw = gmfw;
return gmfh;
#else
return nmf(time, pos, azel, mapfw); /* NMF */
#endif
}
/* interpolate antenna phase center variation --------------------------------*/
static double interpvar(double ang, const double *var)
{
double a = ang / 5.0; /* ang=0-90 */
int i = (int)a;
if (i < 0)
return var[0];
else if (i >= 18)
return var[18];
return var[i] * (1.0 - a + i) + var[i + 1] * (a - i);
}
/* receiver antenna model ------------------------------------------------------
* compute antenna offset by antenna phase center parameters
* args : pcv_t *pcv I antenna phase center parameters
* double *del I antenna delta {e,n,u} (m)
* double *azel I azimuth/elevation for receiver {az,el} (rad)
* int opt I option (0:only offset,1:offset+pcv)
* double *dant O range offsets for each frequency (m)
* return : none
* notes : current version does not support azimuth dependent terms
*-----------------------------------------------------------------------------*/
// extern void antmodel(const pcv_t *pcv, const double *del, const double *azel,
// int opt, double *dant)
//{
// double e[3],off[3],cosel=cos(azel[1]);
// int i,j;
//
// trace(4,"antmodel: azel=%6.1f %4.1f opt=%d\n",azel[0]*R2D,azel[1]*R2D,opt);
//
// e[0]=sin(azel[0])*cosel;
// e[1]=cos(azel[0])*cosel;
// e[2]=sin(azel[1]);
//
// for (i=0;i<NFREQ;i++) {
// for (j=0;j<3;j++) off[j]=pcv->off[i][j]+del[j];
//
// dant[i]=-dot(off,e,3)+(opt?interpvar(90.0-azel[1]*R2D,pcv->var[i]):0.0);
// }
// trace(2,"antmodel: dant=%6.3f %6.3f\n",dant[0],dant[1]);
// }
/* satellite antenna model ------------------------------------------------------
* compute satellite antenna phase center parameters
* args : pcv_t *pcv I antenna phase center parameters
* double nadir I nadir angle for satellite (rad)
* double *dant O range offsets for each frequency (m)
* return : none
*-----------------------------------------------------------------------------*/
// extern void antmodel_s(const pcv_t *pcv, double nadir, double *dant)
//{
// int i;
//
// trace(4,"antmodel_s: nadir=%6.1f\n",nadir*R2D);
//
// for (i=0;i<NFREQ;i++) {
// dant[i]=interpvar(nadir*R2D*5.0,pcv->var[i]);
// }
// trace(4,"antmodel_s: dant=%6.3f %6.3f\n",dant[0],dant[1]);
// }
/* sun and moon position in eci (ref [4] 5.1.1, 5.2.1) -----------------------*/
static void sunmoonpos_eci(gtime_t tut, double *rsun, double *rmoon)
{
const double ep2000[] = {2000, 1, 1, 12, 0, 0};
double t, f[5], eps, Ms, ls, rs, lm, pm, rm, sine, cose, sinp, cosp, sinl, cosl;
trace(4, "sunmoonpos_eci: tut=%s\n", time_str(tut, 3));
t = timediff(tut, epoch2time(ep2000)) / 86400.0 / 36525.0;
/* astronomical arguments */
ast_args(t, f);
/* obliquity of the ecliptic */
eps = 23.439291 - 0.0130042 * t;
sine = sin(eps * D2R);
cose = cos(eps * D2R);
/* sun position in eci */
if (rsun)
{
Ms = 357.5277233 + 35999.05034 * t;
ls = 280.460 + 36000.770 * t + 1.914666471 * sin(Ms * D2R) + 0.019994643 * sin(2.0 * Ms * D2R);
rs = AU * (1.000140612 - 0.016708617 * cos(Ms * D2R) - 0.000139589 * cos(2.0 * Ms * D2R));
sinl = sin(ls * D2R);
cosl = cos(ls * D2R);
rsun[0] = rs * cosl;
rsun[1] = rs * cose * sinl;
rsun[2] = rs * sine * sinl;
trace(5, "rsun =%.3f %.3f %.3f\n", rsun[0], rsun[1], rsun[2]);
}
/* moon position in eci */
if (rmoon)
{
lm = 218.32 + 481267.883 * t + 6.29 * sin(f[0]) - 1.27 * sin(f[0] - 2.0 * f[3]) +
0.66 * sin(2.0 * f[3]) + 0.21 * sin(2.0 * f[0]) - 0.19 * sin(f[1]) - 0.11 * sin(2.0 * f[2]);
pm = 5.13 * sin(f[2]) + 0.28 * sin(f[0] + f[2]) - 0.28 * sin(f[2] - f[0]) -
0.17 * sin(f[2] - 2.0 * f[3]);
rm = RE_WGS84 / sin((0.9508 + 0.0518 * cos(f[0]) + 0.0095 * cos(f[0] - 2.0 * f[3]) +
0.0078 * cos(2.0 * f[3]) + 0.0028 * cos(2.0 * f[0])) *
D2R);
sinl = sin(lm * D2R);
cosl = cos(lm * D2R);
sinp = sin(pm * D2R);
cosp = cos(pm * D2R);
rmoon[0] = rm * cosp * cosl;
rmoon[1] = rm * (cose * cosp * sinl - sine * sinp);
rmoon[2] = rm * (sine * cosp * sinl + cose * sinp);
trace(5, "rmoon=%.3f %.3f %.3f\n", rmoon[0], rmoon[1], rmoon[2]);
}
}
/* sun and moon position -------------------------------------------------------
* get sun and moon position in ecef
* args : gtime_t tut I time in ut1
* double *erpv I erp value {xp,yp,ut1_utc,lod} (rad,rad,s,s/d)
* double *rsun IO sun position in ecef (m) (NULL: not output)
* double *rmoon IO moon position in ecef (m) (NULL: not output)
* double *gmst O gmst (rad)
* return : none
*-----------------------------------------------------------------------------*/
extern void sunmoonpos(gtime_t tutc, const double *erpv, double *rsun,
double *rmoon, double *gmst)
{
gtime_t tut;
double rs[3], rm[3], U[9], gmst_;
trace(4, "sunmoonpos: tutc=%s\n", time_str(tutc, 3));
tut = timeadd(tutc, erpv[2]); /* utc -> ut1 */
/* sun and moon position in eci */
sunmoonpos_eci(tut, rsun ? rs : NULL, rmoon ? rm : NULL);
/* eci to ecef transformation matrix */
eci2ecef(tutc, erpv, U, &gmst_);
/* sun and moon postion in ecef */
if (rsun)
matmul("NN", 3, 1, 3, 1.0, U, rs, 0.0, rsun);
if (rmoon)
matmul("NN", 3, 1, 3, 1.0, U, rm, 0.0, rmoon);
if (gmst)
*gmst = gmst_;
}
/* uncompress file -------------------------------------------------------------
* uncompress (uncompress/unzip/uncompact hatanaka-compression/tar) file
* args : char *file I input file
* char *uncfile O uncompressed file
* return : status (-1:error,0:not compressed file,1:uncompress completed)
* note : creates uncompressed file in tempolary directory
* gzip, tar and crx2rnx commands have to be installed in commands path
*-----------------------------------------------------------------------------*/
extern int rtk_uncompress(const char *file, char *uncfile)
{
int stat = 0;
char *p, cmd[64 + 2048] = "", tmpfile[1024] = "", buff[1024], *fname, *dir = "";
trace(3, "rtk_uncompress: file=%s\n", file);
strcpy(tmpfile, file);
if (!(p = strrchr(tmpfile, '.')))
return 0;
/* uncompress by gzip */
if (!strcmp(p, ".z") || !strcmp(p, ".Z") ||
!strcmp(p, ".gz") || !strcmp(p, ".GZ") ||
!strcmp(p, ".zip") || !strcmp(p, ".ZIP"))
{
strcpy(uncfile, tmpfile);
uncfile[p - tmpfile] = '\0';
sprintf(cmd, "gzip -f -d -c \"%s\" > \"%s\"", tmpfile, uncfile);
if (execcmd(cmd))
{
remove(uncfile);
return -1;
}
strcpy(tmpfile, uncfile);
stat = 1;
}
/* extract tar file */
if ((p = strrchr(tmpfile, '.')) && !strcmp(p, ".tar"))
{
strcpy(uncfile, tmpfile);
uncfile[p - tmpfile] = '\0';
strcpy(buff, tmpfile);
fname = buff;
#ifdef WIN32
if ((p = strrchr(buff, '\\')))
{
*p = '\0';
dir = fname;
fname = p + 1;
}
sprintf(cmd, "set PATH=%%CD%%;%%PATH%% & cd /D \"%s\" & tar -xf \"%s\"",
dir, fname);
#else
if ((p = strrchr(buff, '/')))
{
*p = '\0';
dir = fname;
fname = p + 1;
}
sprintf(cmd, "tar -C \"%s\" -xf \"%s\"", dir, tmpfile);
#endif
if (execcmd(cmd))
{
if (stat)
remove(tmpfile);
return -1;
}
if (stat)
remove(tmpfile);
stat = 1;
}
/* extract hatanaka-compressed file by cnx2rnx */
else if ((p = strrchr(tmpfile, '.')) &&
((strlen(p) > 3 && (*(p + 3) == 'd' || *(p + 3) == 'D')) ||
!strcmp(p, ".crx") || !strcmp(p, ".CRX")))
{
strcpy(uncfile, tmpfile);
uncfile[p - tmpfile + 3] = *(p + 3) == 'D' ? 'O' : 'o';
sprintf(cmd, "crx2rnx < \"%s\" > \"%s\"", tmpfile, uncfile);
if (execcmd(cmd))
{
remove(uncfile);
if (stat)
remove(tmpfile);
return -1;
}
if (stat)
remove(tmpfile);
stat = 1;
}
trace(3, "rtk_uncompress: stat=%d\n", stat);
return stat;
}
/* dummy application functions for shared library ----------------------------*/
#ifdef WIN_DLL
extern int showmsg(char *format, ...)
{
return 0;
}
extern void settspan(gtime_t ts, gtime_t te) {}
extern void settime(gtime_t time) {}
#endif