/*------------------------------------------------------------------------------ * lambda.c : integer ambiguity resolution * * Copyright (C) 2007-2008 by T.TAKASU, All rights reserved. * * reference : * [1] P.J.G.Teunissen, The least-square ambiguity decorrelation adjustment: * a method for fast GPS ambiguity estimation, J.Geodesy, Vol.70, 65-82, * 1995 * [2] X.-W.Chang, X.Yang, T.Zhou, MLAMBDA: A modified LAMBDA method for * integer least-squares estimation, J.Geodesy, Vol.79, 552-565, 2005 * * version : $Revision: 1.1 $ $Date: 2008/07/17 21:48:06 $ * history : 2007/01/13 1.0 new * 2015/05/31 1.1 add api lambda_reduction(), lambda_search() *-----------------------------------------------------------------------------*/ #include "rtklib.h" /* constants/macros ----------------------------------------------------------*/ #define LOOPMAX 10000 /* maximum count of search loop */ #define SGN(x) ((x) <= 0.0 ? -1.0 : 1.0) #define ROUND(x) (floor((x) + 0.5)) #define SWAP(x, y) \ do \ { \ double tmp_; \ tmp_ = x; \ x = y; \ y = tmp_; \ } while (0) /* LD factorization (Q=L'*diag(D)*L) -----------------------------------------*/ static int LD(int n, const double *Q, double *L, double *D) { int i, j, k, info = 0; double a, *A = mat(n, n); memcpy(A, Q, sizeof(double) * n * n); for (i = n - 1; i >= 0; i--) { if ((D[i] = A[i + i * n]) <= 0.0) { info = -1; break; } a = sqrt(D[i]); for (j = 0; j <= i; j++) L[i + j * n] = A[i + j * n] / a; for (j = 0; j <= i - 1; j++) for (k = 0; k <= j; k++) A[j + k * n] -= L[i + k * n] * L[i + j * n]; for (j = 0; j <= i; j++) L[i + j * n] /= L[i + i * n]; } free(A); if (info) fprintf(stderr, "%s : LD factorization error\n", __FILE__); return info; } /* integer gauss transformation ----------------------------------------------*/ static void gauss(int n, double *L, double *Z, int i, int j) { int k, mu; if ((mu = (int)ROUND(L[i + j * n])) != 0) { for (k = i; k < n; k++) L[k + n * j] -= (double)mu * L[k + i * n]; for (k = 0; k < n; k++) Z[k + n * j] -= (double)mu * Z[k + i * n]; } } /* permutations --------------------------------------------------------------*/ static void perm(int n, double *L, double *D, int j, double del, double *Z) { int k; double eta, lam, a0, a1; eta = D[j] / del; lam = D[j + 1] * L[j + 1 + j * n] / del; D[j] = eta * D[j + 1]; D[j + 1] = del; for (k = 0; k <= j - 1; k++) { a0 = L[j + k * n]; a1 = L[j + 1 + k * n]; L[j + k * n] = -L[j + 1 + j * n] * a0 + a1; L[j + 1 + k * n] = eta * a0 + lam * a1; } L[j + 1 + j * n] = lam; for (k = j + 2; k < n; k++) SWAP(L[k + j * n], L[k + (j + 1) * n]); for (k = 0; k < n; k++) SWAP(Z[k + j * n], Z[k + (j + 1) * n]); } /* lambda reduction (z=Z'*a, Qz=Z'*Q*Z=L'*diag(D)*L) (ref.[1]) ---------------*/ static void reduction(int n, double *L, double *D, double *Z) { int i, j, k; double del; j = n - 2; k = n - 2; //这里的调序变换类似插入排序的思路? while (j >= 0) { //由于第k+1,k+2,...,n-2列都进行过降相关并且没有被上一次调序变换影响, //因此只需对第0,1,...,k-1,k列进行降相关 if (j <= k) for (i = j + 1; i < n; i++) gauss(n, L, Z, i, j); //从最后一列开始,各列非对角线元素从上往下依次降相关 del = D[j] + L[j + 1 + j * n] * L[j + 1 + j * n] * D[j + 1]; if (del + 1E-6 < D[j + 1]) { /* 检验条件,若不满足检验条件则开始进行调序变换compared considering numerical error */ perm(n, L, D, j, del, Z); //调序变换 k = j; j = n - 2; //完成调序变换后重新从最后一列开始进行降相关及排序,k记录最后一次进行过调序变换的列序号 } else j--; } } /* modified lambda (mlambda) search (ref. [2]) ------------------------------- * args : n I number of float parameters * m I number of fixed solution L,D I transformed covariance matrix zs I transformed double-diff phase biases zn O fixed solutions s O sum of residuals for fixed solutions */ static int search(int n, int m, const double *L, const double *D, const double *zs, double *zn, double *s) { int i, j, k, c, nn = 0, imax = 0; double newdist, maxdist = 1E99, y; // maxdist,当前超椭圆半径 double *S = zeros(n, n), *dist = mat(n, 1), *zb = mat(n, 1), *z = mat(n, 1), *step = mat(n, 1); k = n - 1; dist[k] = 0.0; // k表示当前层,从最后一层(n-1)开始计算 zb[k] = zs[k]; //即zn z[k] = ROUND(zb[k]); //四舍五入取整;取整后的数与未取整的数作差;step记录z[k]是四舍还是五入 y = zb[k] - z[k]; step[k] = SGN(y); /* step towards closest integer */ for (c = 0; c < LOOPMAX; c++) { newdist = dist[k] + y * y / D[k]; /* newdist=sum(((z(j)-zb(j))^2/d(j))) */ if (newdist < maxdist) { //如果当前累积目标函数计算值小于当前超椭圆半径 /* Case 1: move down 情况1:若还未计算至第一层,继续计算累积目标函数值 */ if (k != 0) { dist[--k] = newdist; //记录下当前层的累积目标函数值,dist[k]表示了第k,k+1,...,n-1层的目标函数计算和 for (i = 0; i <= k; i++) S[k + i * n] = S[k + 1 + i * n] + (z[k + 1] - zb[k + 1]) * L[k + 1 + i * n]; zb[k] = zs[k] + S[k + k * n]; //计算Zk,即第k个整数模糊度参数的备选组的中心 z[k] = ROUND(zb[k]); /* next valid integer 四舍五入取整;取整后的数与未取整的数作差;记录是四舍还是五入*/ y = zb[k] - z[k]; step[k] = SGN(y); } /* Case 2: store the found candidate and try next valid integer 情况2:若已经计算至第一层,意味着所有层的累积目标函数值计算完毕 */ else { // nn为当前候选解数,m为我们需要的固定解数,这里为2,表示需要一个最优解及一个次优解 // s记录候选解的目标函数值,imax记录之前候选解中的最大目标函数值的坐标 if (nn < m) { //若候选解数还没满 /* store the first m initial points */ if (nn == 0 || newdist > s[imax]) imax = nn; //若当前解的目标函数值比之前最大的目标函数值都大,那么更新imax使s[imax]指向当前解中具有的最大目标函数值 for (i = 0; i < n; i++) zn[i + nn * n] = z[i]; // zn存放所有候选解 s[nn++] = newdist; // s记录当前目标函数值newdist,并加加当前候选解数nn } else { //若候选解数已满(即当前zn中已经存了2个候选解) if (newdist < s[imax]) { //若 当前解的目标函数值 比 s中的最大目标函数值 小 for (i = 0; i < n; i++) zn[i + imax * n] = z[i]; //用当前解替换zn中具有较大目标函数值的解 s[imax] = newdist; //用当前解的目标函数值替换s中的最大目标函数值 for (i = imax = 0; i < m; i++) if (s[imax] < s[i]) imax = i; //更新imax保证imax始终指向s中的最大目标函数值 } maxdist = s[imax]; //用当前最大的目标函数值更新超椭圆半径 } z[0] += step[0]; /* next valid integer在第一层,取下一个有效的整数模糊度参数进行计算(若zb为5.3,则z取值顺序为5,6,4,7,...) */ y = zb[0] - z[0]; step[0] = -step[0] - SGN(step[0]); } } /* Case 3: exit or move up情况3:如果当前累积目标函数计算值大于当前超椭圆半径 */ else { if (k == n - 1) break; //如果当前层为第n-1层,意味着后续目标函数各项的计算都会超出超椭圆半径,因此终止搜索 else { //若当前层不是第n-1层 k++; /* move up 退后一层,即从第k层退到第k+1层*/ z[k] += step[k]; /* next valid integer 计算退后一层后,当前层的下一个有效备选解*/ y = zb[k] - z[k]; step[k] = -step[k] - SGN(step[k]); } } } // 对s中的目标函数值及zn中的候选解进行排序(以s中目标函数值为排序标准,进行升序排序) // RTKLIB中最终可以得到一个最优解一个次优解,存在zn中,两解对应的目标函数值,存在s中 for (i = 0; i < m - 1; i++) { /* sort by s */ for (j = i + 1; j < m; j++) { if (s[i] < s[j]) continue; SWAP(s[i], s[j]); for (k = 0; k < n; k++) SWAP(zn[k + i * n], zn[k + j * n]); } } free(S); free(dist); free(zb); free(z); free(step); if (c >= LOOPMAX) { fprintf(stderr, "%s : search loop count overflow\n", __FILE__); return -2; } return 0; } /* lambda/mlambda integer least-square estimation ------------------------------ * integer least-square estimation. reduction is performed by lambda (ref.[1]), * and search by mlambda (ref.[2]). * args : * rtk_t* rtk I * int n I number of float parameters * int m I number of fixed solutions * double *a I float parameters (n x 1) (double-diff phase biases) * double *Q I covariance matrix of float parameters (n x n) * double *F O fixed solutions (n x m) * double *s O sum of squared residulas of fixed solutions (1 x m) * return : status (0:ok,other:error) * notes : matrix stored by column-major order (fortran convension) *-----------------------------------------------------------------------------*/ extern int lambda(rtk_t* rtk, int n, int m, const double *a, const double *Q, double *F, double *s) { int info; double *L, *D, *Z, *z, *E; if (n <= 0 || m <= 0) return -1; L = zeros(n, n); D = mat(n, 1); Z = eye(n); z = mat(n, 1); E = mat(n, m); /* LD (lower diaganol) factorization (Q=L'*diag(D)*L) */ if (!(info = LD(n, Q, L, D))) { /* lambda reduction (z=Z'*a, Qz=Z'*Q*Z=L'*diag(D)*L) */ reduction(n, L, D, Z); matmul("TN", n, 1, n, 1.0, Z, a, 0.0, z); /* z=Z'*a */ /* mlambda search z = transformed double-diff phase biases L,D = transformed covariance matrix */ if (!(info = search(n, m, L, D, z, E, s))) { /* returns 0 if no error */ /* 将在新空间中固定的模糊度逆变换回双差模糊度空间中 */ info = solve("T", Z, E, n, m, F); /* F=Z'\E */ } } free(L); free(D); free(Z); free(z); free(E); return info; } /* lambda reduction ------------------------------------------------------------ * reduction by lambda (ref [1]) for integer least square * args : int n I number of float parameters * double *Q I covariance matrix of float parameters (n x n) * double *Z O lambda reduction matrix (n x n) * return : status (0:ok,other:error) *-----------------------------------------------------------------------------*/ extern int lambda_reduction(int n, const double *Q, double *Z) { double *L, *D; int i, j, info; if (n <= 0) return -1; L = zeros(n, n); D = mat(n, 1); for (i = 0; i < n; i++) for (j = 0; j < n; j++) { Z[i + j * n] = i == j ? 1.0 : 0.0; } /* LD factorization */ if ((info = LD(n, Q, L, D))) { free(L); free(D); return info; } /* lambda reduction */ reduction(n, L, D, Z); free(L); free(D); return 0; } /* mlambda search -------------------------------------------------------------- * search by mlambda (ref [2]) for integer least square * args : int n I number of float parameters * int m I number of fixed solutions * double *a I float parameters (n x 1) * double *Q I covariance matrix of float parameters (n x n) * double *F O fixed solutions (n x m) * double *s O sum of squared residulas of fixed solutions (1 x m) * return : status (0:ok,other:error) *-----------------------------------------------------------------------------*/ extern int lambda_search(int n, int m, const double *a, const double *Q, double *F, double *s) { double *L, *D; int info; if (n <= 0 || m <= 0) return -1; L = zeros(n, n); D = mat(n, 1); /* LD factorization */ if ((info = LD(n, Q, L, D))) { free(L); free(D); return info; } /* mlambda search */ info = search(n, m, L, D, a, F, s); free(L); free(D); return info; }